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Abstract

This paper investigates the notion of stochastic volatility in the time series of
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An application on daily SPX option surfaces is used to demonstrate the value of this
approach, as the empirical behavior of such data are well-characterized by such a
model and the functional time series approach can naturally facilitate daily changes
in observation locations. The resulting methodology provides a description of joint
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a more realistic characterization of risk for option portfolios.
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1 Introduction

A functional time series {Yt(τ)} is a time-indexed sequence (t = 1, 2, . . .) of stochastic

processes used to model the time dynamics of random phenomena which live on a continuum

(τ ∈ T ) and are best understood as random functions. The topic has become increasingly

relevant as the collection of data in high resolution or frequency has become commonplace.

By modelling randomness on a whole continuum instead of a fixed or discrete set of do-

main points, a functional time series presents some key advantages over multivariate or

vector time series. Firstly, a multivariate time series requires measurements on a regular

unchanging grid and special handling of missing data. However, in real world applications

the measurement locations of the data may be changing with time, sparse, or irregularly

spaced. Furthermore, the parameter space of a vector time series model grows in size with

respect to the dimension of the vector. By adopting a function space perspective, a func-

tional time series bypasses these problems because its parameterization is independent of

the set of measurement points.

Functional time series have found application in a wide variety of domains such as demo-

graphic forecasting (Hyndman and Booth, 2008; Shang et al., 2011; Hyndman et al., 2013;

Li et al., 2020), spatiotemporal modelling (Besse et al., 2000; Ruiz-Medina et al., 2013;

Cressie and Wikle, 2015; Jang and Matteson, 2018; King et al., 2018), yield curve forecast-

ing (Kowal et al., 2017; Sen and Klüppelberg, 2019; Kowal et al., 2019), high frequency

finance (Hörmann et al., 2013; Aue et al., 2017; Li et al., 2020; Huang et al., 2020), traffic

flow modelling (Klepsch et al., 2017), and electricity demand forecasting (Shang, 2013;

Yasmeen and Sharif, 2015; Chen and Li, 2017).

Results of Karhunen (1947) and Loève (1945) imply that functional principal component

analysis (FPCA) provides a mean-square optimal finite dimensional representation of a

functional time series {Yt(τ)} if Yt are i.i.d. for all t and have a defined second moment.

However, when the functional observations exhibit time dependence, mean-square optimal-

ity no longer holds and FPCA on its own cannot provide a description of serial dependence.

Further background on the foundations of functional data analysis and FPCA can be found
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in Ramsay et al. (2005), Horváth and Kokoszka (2012), and Hsing and Eubank (2015).

Many important multivariate time series models have been generalized to a functional

setting. A functional analogue of autoregressive integrated moving average (ARIMA) has

been developed with theory of the functional autoregression (FAR) model studied by Bosq

(2000) on Hilbert and Banach spaces. Further developments in the prediction of functional

time series are in Hyndman and Shahid Ullah (2007), Bosq (2014) and Aue et al. (2015).

A functional moving average (FMA) model was further studied in Aue and Klepsch (2017).

Sen and Klüppelberg (2019) studied how a functional ARMA model leads to a vector

ARMA structure on the principal component scores. Li et al. (2020) studied long memory

in functional time series through building analogous fractional differenced ARIMA models.

However, the study of time-varying volatility in functional time series is a relatively new

area and this paper presents an approach to modelling heteroscedasticity in functional time

series.

In time series analysis, accounting for heteroscedasticity or time-varying volatility is critical

to accurate and reliable uncertainty quantification in forecasting problems. Heteroscedas-

ticity is commonly addressed through autoregressive conditional heteroscedasticity (ARCH)

models, generalized autoregressive conditional heteroscedasticity (GARCH) models, or

stochastic volatility (SV) models. In ARCH/GARCH models, the conditional volatility pro-

cess is a deterministic function of past data, while in SV models, the conditional volatility is

driven by its own stochastic process and is not measurable with respect to past observable

information.

These models are well-studied for univariate and multivariate time series. In univariate

time series, the ARCH model was proposed by Engle (1982) and the GARCH model by

Bollerslev (1986), while the univariate SV model was proposed by Taylor (1982) and Taylor

(1986), with further investigations and comparisons by Taylor (1994), Shephard (1996),

and Ghysels et al. (1996) for example. Multivariate versions of GARCH were examined

in Bollerslev et al. (1988) and Bollerslev (1990) while multivariate SV was examined in

Harvey et al. (1994), Daniélsson (1998), and Asai et al. (2006). Bayesian estimation of

multivariate GARCH and SV were examined in Vrontos et al. (2003) and Yu and Meyer
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(2006) respectively.

In recent developments of heteroscedastic functional time series models, Hörmann and

Kokoszka (2010) formalized the notion of weakly dependent functional time series, while

Hörmann et al. (2014) addresseed serial correlation with a dynamic Karhunen-Loève expan-

sion, a functional analogue of the dynamic principal component analysis for multivariate

time series in Brillinger (1981). This approach eliminates cross-correlations in principal

component scores at all leads and lags. Jang et al. (2017) developed Bayesian infer-

ence for stationary covariance functions using Lévy process priors. Hörmann et al. (2013)

and Aue et al. (2017) approached heteroscedasticity with functional autoregressive con-

ditional heteroscedasticity (fARCH) and functional generalized autoregressive conditional

heteroscedasticity (fGARCH) models respectively.

This paper introduces the notion of stochastic volatility to the functional time series setting

and demonstrates through an application where such a model could be of interest. As SV

models lack a closed-form likelihood, they have found relatively less popularity in empirical

applications compared to ARCH/GARCH type models. However, the randomness in the

volatility process of an SV model offers a higher degree of flexibility and allows them to

fit to data as well as more heavily parameterized GARCH models (Daniélsson, 1998; Kim

et al., 1998). SV models also provide a more natural discrete analogue to the stochastic

differential equations used in option pricing such as the stochastic volatility diffusion of

Hull and White (1987).

The challenge of SV model estimation is effectively addressed through the Bayesian ap-

proach pioneered by Jacquier et al. (1994), which recasts the SV model into linear state

space form and then employs the Kalman filter. This approach was refined in the mixture

sampler of Kim et al. (1998) and the Ancillary-Sufficiency Interweaving Strategy of Kastner

and Frühwirth-Schnatter (2014). These methods lead to highly efficient Bayesian inference

for the SV model and can be readily adapted to more complex hierarchical models.

Kowal et al. (2017) and Kowal et al. (2019) introduced a Bayesian framework for functional

time series with a Bayesian hierarchical specification, and this paper adds one more level to
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the hierarchical model of Kowal et al. (2017) to build a fully Bayesian model for functional

stochastic volatility.

As stochastic volatility is ubiquitous in the empirical movements of financial prices and

returns (Hull and White, 1987; Heston, 1993; Heston and Nandi, 2000; Gatheral, 2006;

Shephard and Andersen, 2009), we apply the functional stochastic volatility model in a

financial setting, modelling the daily movements of SPX option surfaces. For each day

in the time period from January 1, 2010 to December 31, 2017 we observe hundreds to

thousands of option contracts (differentiated by their strike price and time to maturity) as a

set of discrete points on an underlying continuous option surface. The empirical movements

of the principal component scores of these surfaces clearly exhibit stochastic volatility in

an exploratory analysis. By accounting for the empirically observed stochastic volatility in

SPX option surfaces, we show through an experiment that a functional stochastic volatility

model is capable of accurately estimating the Value-at-Risk of SPX option portfolios.

We now outline the remainder of the paper. Section 2 describes the functional stochastic

volatility model and justifies consideration of a finite-dimensional form. Section 3 addresses

Bayesian inference for the FSV model. Section 4 presents an application of the FSV model

to SPX option portfolio risk management.

2 Methodology

We will now formulate the functional stochastic volatility model. In Subsection 2.1 we

define a functional stochastic volatility model. Subsection 2.2 will set up the notation

of a functional time series and describe the functional analogue of the ARMA model.

Then in Subsection 2.3 we describe the reduction of the functional specification to a finite-

dimensional vector specification suited for inference. Lastly, Subsection 2.4 describes the

basis functions used for dimension reduction.
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2.1 Functional Stochastic Volatility

Let {ηt} be a sequence of random functions in L2(T ) for some compact domain T ⊆ Rd.

Suppose {ηt} consists of the following heteroscedastic innovations

ηt(τ) = vt(τ)zt(τ), vt ≥ 0,

where {zt} is a sequence of independent and identically distributed mean zero random

functions on T with known covariance function Cov(zt(τ), zt(u)) = kz(τ, u) ∀t, kz(τ, τ) =

1 ∀τ , and {zt} is independent of volatility process {vt}.

Then {ηt} is a functional stochastic volatility model if for any t, vt is a random function on

T and is not measurable with respect to the sigma field generated by {vs}t−1
s=1 and {ηs}t−1

s=1.

2.2 Functional ARMA

Assume the data arise from an underlying sequence of time-ordered mean-zero real-valued

random functions {Yt} in L2(T ) for some compact domain T ⊆ Rd. We will suppose

for each time t that Yt is observed at nt ≥ 0 locations with measurement error as yt,i =

m(τt,i) + Yt(τt,i) + εt,i where τt,1, . . . , τt,nt ∈ T are the observation locations, m(τ) is the

mean function, and εt,i
iid∼ N(0, σ2

ε) is the observation error.

Then we define a functional ARMA(p,q) model for {Yt} with the following form:

Yt(τ) = ηt(τ) +

p∑
i=1

∫
T
ψi(τ, u)Yt−i(u)du−

q∑
j=1

∫
T
θj(τ, u)ηt−j(u)du

where {ηt} are mean zero random functions with E ‖ηt‖2 ≡ E
[∫
T ηt(τ)2dτ

]
< ∞ and

E[ηt(τ)ηs(τ)] = 0 ∀t 6= s and ∀τ ∈ T so that {ηt} are uncorrelated in t but not necessarily

independent. These conditions are satisfied, for example, by the functional stochastic

volatility model in Section 2.1. The parameter kernel functions {ψi} and {θj} are analogous

to the parameter matrices in an multivariate ARMA model and control time dependence in

the conditional mean. Note that the functional ARMA model can be defined more generally
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with bounded linear operators on Hilbert spaces (see Bosq (2000)). For this paper we will

work with the functional AR(1) process and drop the index on the integral kernel function

ψ1:

Yt(τ) =

∫
T
ψ(τ, u)Yt−1(u)du+ ηt(τ)

2.3 Reducing a Functional Time Series to a Vector Time Series

The functional ARMA model becomes more tractable if we make certain assumptions. In

particular, we assume T ⊂ Rd is compact, f1, . . . , fK ∈ L2(T ) are orthonormal determin-

istic functions, and that

1. {Yt} ⊆ Span (f1, . . . , fK), so there exist random coefficient vectors βt = (βt1, . . . , βtK)>

and γt = (γt1, . . . , γtK)> such that

Yt =
K∑
k=1

βtkfk, and ηt =
K∑
k=1

γtkfk.

where βtk =< Yt, fk > and γtk =< ηt, fk >. Since fk’s are orthogonal, for any fixed t

the entries of βt are uncorrelated, as are the entries of γt.

2. ψ(τ, u) ∈ Span (f1, . . . , fK) ⊗ Span (f1, . . . , fK), so there exists a K × K coefficient

matrix Ψ = [ψkj] such that

ψ(τ, u) =
K∑
k=1

K∑
j=1

ψkjfk(τ)fj(u)

where ψkj =<< ψ(?, ·), fj(·) >, fk(?) >=
∫
T

∫
T ψ(τ, u)fj(u)fk(τ)dudτ .

3. The coefficient vectors γt are a time-dependent sequence of random vectors with

γt|Ft−1 ∼ NK(0,Σγt)

and the conditional covariance function of ηt(τ) is defined and satisfies

Cov(ηt(τ), ηt(u)|Ft−1) ≡ kηt(τ, u) =
K∑
k=1

ehtkfk(τ)fk(u)

where Ft is the sigma field generated by {γs}ts=1 and {hs}ts=1 with ht = (ht1, . . . , htK)>.
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Under assumptions 1-3 above, the coefficients {βt}Tt=1 form a K-dimensional VAR(1) pro-

cess

βt = Ψβt−1 + γt

γt|Ft−1 ∼ NK(0,Σγt)

where Σγt is assumed diagonal and equal to diag{eht}. {βt}Tt=1 is a VAR(1) process with

stochastic volatility as the conditional covariance matrix of γt depends on the random

vector ht and is hence not Ft−1-measurable.

In this paper, we use VAR(1) dynamics for ht which is well-suited for capturing a volatility

clustering effect.

ht = µ+ Φ(ht−1 − µ) + ηt

ηt
iid∼ NK(0,Ση)

For parsimony we will assume the matrices Φ and Ση are diagonal and that each {htk}Tt=1

is independent of all other {htj}Tt=1’s for any j 6= k. Hence for K-dimensional parameter

vectors φ and ση,

ht = µ+ φ · (ht−1 − µ) + ηt

ηt
iid∼ NK(0, diag{σ2

η})

Letting yt = [yt,1, . . . , yt,nt ]
>,mt = [m(τt,1), . . . ,m(τt,nt)]

>, [Ft]i,k = fk(τt,i), βt = [βt1, . . . , βtK ]>,

εt = [εt,1, . . . , εt,nt ]
>, [Ψ]k,j = ψkj, ht = [ht1, . . . , htK ]>, γt = [γt1, . . . , γtK ]>, µ = [µ1, . . . , µK ]>,

φ = [φ1, . . . , φK ]>, ση = [σ1, . . . , σK ]>, and ηt = [ηt1, . . . , ηtK ]> we can succinctly summa-

rize our hierarchical model as follows:
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yt = mt + Ftβt + εt, εt ∼ Nnt(0, σ
2
εI) ∀t ≥ 1, (1)

βt = Ψβt−1 + γt, γt|ht ∼ NK(0, diag{eht}) ∀t ≥ 1, (2)

ht = µ+ φ · (ht−1 − µ) + ηt, ηt ∼ NK(0, diag{σ2
η}) ∀t > 1, (3)

h1 ∼ NK

(
µ, diag

{
σ2
η

1− φ

})
(4)

where

1. {εt} and {ηt} are independent across t and with each other.

2. {εt} is independent of {γt}.

3. γt is conditionally independent of {γs}t−1
s=1 given ht.

4. h1 is independent of everything else.

2.4 Basis Function Selection

A functional time series represents an infinite-dimensional random process, but in practical

implementations we seek a finite-dimensional representation which under suitable regularity

conditions can best approximate the underlying process with the least information loss. In

our applications we use the first K functional principal components for f1, . . . , fK and

estimate them from the spline-smoothed functional data. Refer to Appendix Section 6.1

for further justification.

3 Inference

This section describes Bayesian inference for the functional stochastic volatility model.

Subsection 3.1 briefly introduces Gibbs sampling, while Subsection 3.2 presents the prior

specification and resulting full conditional distributions.
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3.1 Markov Chain Monte Carlo and Gibbs Sampling

Suppose our observed data y1, . . . , yn are sampled from some joint density p(y1, . . . , yn|θ)

where θ ∈ Θ represents the parameters of the model. Let p(θ) be the prior density on θ.

The posterior density after observing y1, . . . , yn is given by

p(θ|y1, . . . , yn) =
p(y1, . . . , yn|θ)p(θ)∫
p(y1, . . . , yn|θ′)p(θ′)dθ′

∝ p(y1, . . . , yn|θ)p(θ).

For many complex models, the posterior density cannot be evaluated analytically because

the integral in the denominator is intractable. To address this problem, Markov Chain

Monte Carlo (MCMC) methods construct a Markov chain on the parameter space that has

the posterior as its stationary distribution. The sample path of the Markov chain can then

be used to approximate posterior summaries, functionals, or other quantities of interest.

The Gibbs sampling algorithm proceeds by partitioning the parameter space into disjoint

blocks such that Θ = Θ1× . . .×ΘM and then iteratively sampling from the full conditional

distributions p(θ1|{yi}ni=1, {θm}m6=1), . . . , p(θM |{yi}ni=1, {θm}m 6=M) in sequential order. An

advantage of the Gibbs sampling approach is that the full conditional distributions are often

analytically tractable even when the joint posterior distribution is not. Also the Gibbs

sampling algorithm is modular, allowing one to plug in existing techniques to sample from

the full conditional distributions when they are available. Refer to Gelman et al. (2013)

for an overview of MCMC, Gibbs sampling, and Bayesian data analysis.

3.2 Prior Specification and Full Conditional Distributions

This section presents the prior specification for the functional stochastic volatility model

and the resulting full conditional distributions. In order to write these succinctly, we

introduce matrix variate notation to simplify Equations 1-4 in Section 2.3.

From the terms in Equations 2, 3 and 4 define the following KT -dimension random vectors

β = [β>1 , . . . ,β
>
T ]>, γ = [γ>1 , . . . ,γ

>
T ], and h = [h>1 , . . . ,h

>
T ]. Then the random vectors
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satisfy

Pβ = γ (5)

where

P =



IK 0K 0K ... 0K

−Ψ IK 0K ... 0K

0K −Ψ IK ... 0K

... ... ...
. . . ...

0K 0K 0K ... IK


.

From the terms in Equation 1 with ny ≡
∑T

t=1 nt, define the ny-dimensional random vectors

y = [y>1 , . . . ,y
>
T ]>, m = [m>1 , . . . ,m

>
T ]> and ε = [ε>1 , . . . , ε

>
T ]> and the block diagonal

matrix F = diag{F1, . . . , FT}. Then

y = m+ Fβ + ε.

Writing the SV parameters as θh = (µ,φ,ση), it follows from Equation 1 that

y|β,h,θh,Ψ, σ2
ε ∼ Nny(m+ Fβ, σ2

εI),

so the likelihood function is

p(y|β,h,θh,Ψ, σ2
ε) = (2πσ2

ε)
−ny/2 exp

(
−‖y −m− Fβ‖

2

2σ2
ε

)
.

For the log-variance process h and its associated SV parameters θh, the priors are assigned

as in Kim et al. (1998) and Kastner and Frühwirth-Schnatter (2014). More specifically, the

conditional prior of h given θh is

p(h|θh) = p(h1|θh)
T∏
t=2

p(ht|ht−1,θh)

ht|ht−1,θh ∼ NK

(
µ+ φ · (ht−1 − µ), diag{σ2

η}
)

h1|θh ∼ NK

(
µ, diag

{
σ2
η

1− φ

})
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and the priors of the SV parameters θh are

p(θh) =
K∏
k=1

p(µk)p(φk)p(σ
2
k)

µk ∼ N(bµ, Bµ) ∀k

(1 + φk)/2 ∼ Beta(aφ, bφ) ∀k

σ2
k ∼ Bσ · χ2

1 ≡ Bσ ·Gamma

(
1

2
,

1

2Bσ

)
∀k

For the remaining parameters, we assign the following priors which yield closed form full

conditionals:

β|h,Ψ ∼ NTK(0TK , P
−1diag{exp(h)}P−>),

Ψ ∼ Matrix NormalK,K(M,U, V ),

σ2
ε ∼ InvGamma(aε, bε),

where Matrix NormalK,K(M,U, V ) indicates a K×K matrix normal distribution with mean

matrix M and scale matrices U and V . The density function is shown in Appendix Section

6.3. InvGamma(aε, bε) indicates an inverse gamma distribution with shape parameter aε

and scale parameter bε. The full set of prior hyperparameters is (bµ, Bµ, aφ, bφ,M, U, V, aε, bε, Bσ)

Hence all full conditionals will be proportional to the joint density of (y,β,h,θh,Ψ, σ
2
ε),

defined by the following product:

p(y,β,h,θh,Ψ, σ
2
ε) = p(y|β, σ2

ε)p(β|h,Ψ)p(h|θh)p(θh)p(Ψ)p(σ2
ε).

The full conditionals of h and θh and their samplers are derived in Kim et al. (1998) and

Kastner and Frühwirth-Schnatter (2014). After Gibbs updates to β and Ψ, γ is recalculated

through Equation 5. As each univariate series {γtk}Tt=1 is assumed independent of the

others for different k, each {γtk}Tt=1 is a univariate time series with an associated stochastic

volatility process {htk}Tt=1 as in Kim et al. (1998), where Bayesian inference of {htk}Tt=1

and its three associated parameters {µk, φk, σk} is achieved through a mixture sampler

applied to {γtk}Tt=1. The R package stochvol developed by Kastner (2016) employs this
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mixture sampler and uses the Ancillarity-Sufficiency Interweaving Strategy in Kastner and

Frühwirth-Schnatter (2014) for highly efficient Bayesian inference.

The remaining full conditional distributions are as follows:

β|y,h,θh,Ψ, σ2
ε ∼ NTK

(
µβ, σ

2
εΛ
−1
β

)
,

σ2
ε |y,β,h,θh,Ψ ∼ InvGamma

(
aε +

ny
2
, bε +

1

2
‖y −m− Fβ‖2

)
,

vec(Ψ)|y,β,h, σ2
ε ∼ NK2(µΨ,ΣΨ),

where

µβ = Λ−1
β F>(y −m),

Λβ = F>F + σ2
εP
>diag{exp(−h)}P,

Σt = diag{exp(ht)},

µΨ = ΣΨvec

(
T∑
t=2

Σ−1
t βtβ

>
t−1 + U−1MV −1

)
,

ΣΨ =

[
T∑
t=2

(βt−1β
>
t−1 ⊗ Σ−1

t ) + (V −1 ⊗ U−1)

]−1

.

The full conditionals for β and σ2
ε follow from the well-known Bayesian linear regression

with the Normal-Inverse-Gamma conjugate prior, and a derivation can be found in Gelman

et al. (2013) for example. Though the dimension of β is potentially very large, the block

structure of its precision matrix can be exploited for efficient Monte Carlo sampling. Refer

to Appendix Section 6.2 for how to sample the full conditional for β. Refer to Appendix

Section 6.3 for derivation of the full conditional for Ψ.

4 Value-at-Risk Estimation for Option Portfolios

In this section we apply the functional stochastic volatility model to SPX option surface

data in order to estimate Value-at-Risk for option portfolios. The results indicate that the
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stochastic volatility aspect can improve quantile estimates in this setting. Subsection 4.1

provides an overview of the application. Subsection 4.2 describes in detail the SPX op-

tion surface data set and its representation as a functional time series {Yt(τ)}. Subsection

4.3 presents a justification for the application of a functional stochastic volatility model

through an exploratory analysis and visualizes the basis functions chosen for the applica-

tion. Subsection 4.4 discusses the construction of a forecast distribution for Yt(τ) from

posterior samples and describes how the forecast distribution is used to estimate quantiles.

Subsection 4.5 evaluates the quality of the forecast against a benchmark constant volatility

model.

4.1 Overview of Application

The field of financial risk management is concerned with the estimation of worst case

outcomes (rather than mean outcomes) in order to quantify the magnitude of potential

losses due to adverse movements in market prices or other risk factors. Consequently, the

problem of quantile estimation is of key importance. Stochastic volatility models are often

employed in the field because they better represent the empirical movements of financial

time series, and as a result, improve upon quantile estimates for univariate and multivariate

time series (Sadorsky, 2005; Han et al., 2014; Huang, 2015; Bui Quang et al., 2018). This

application tests an analogous problem for a functional time series.

In the present application, the functional time series process {Yt(τ)}Tt=1 represents a surface

of option price quotes and is modelled with the proposed functional stochastic volatility

model. An option gives the owner the choice to buy (if a call option) or sell (if a put option)

an underlying asset St at some fixed strike price K at some future maturity date u > t.

For any single underlying asset (such as the S&P 500 Index) there exists an entire surface

of options for that asset, because options can differ by their strike price K and maturity

date u. These two variables define the dimensions of the domain variable τ ∈ T ⊆ R2. The

range variable Yt(τ) can be thought of as a proxy for the price of the option with contract

terms τ , as there is a one-to-one relationship between Yt(τ) and the option price. These
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variables are described in full detail in Subsection 4.2.

Consider a loss random variable Lt+1 = Πt(Yt+1) for some functional Πt : L2(T )→ R. The

loss random variable Lt+1 represents the decrease in value of a portfolio of options from

time t to time t + 1. The functional Πt is determined by the composition of the option

portfolio held at time t. Lt+1 and Πt are constructed explicitly in Subsection 4.4.

The next-day (1− α)100% Value-at-Risk for Lt+1 is defined as

VaR(Lt+1, 1− α) = sup{x ∈ R : P(Lt+1 ≤ x) < 1− α} (6)

= F−1
Lt+1

(1− α) if Lt+1 is a continuous random variable. (7)

In other words, Value-at-Risk is the quantile function for the loss random variable Lt+1.

Estimating Value-at-Risk is a key problem in financial risk management as it identifies the

potential magnitude of loss Lt due to the random market price movements of Yt.

A natural approach for evaluating the quality of an estimator V̂aR(Lt+1, 1−α) is to compare

the proportion of observed exceedences of the quantile estimate to the true level of the

quantile. Define the exceedence indicator variables Xt = 1{Lt+1>V̂aR(Lt+1,1−α)} for t =

1, . . . , T − 1 and set NT−1 =
∑T−1

t=1 Xt. If we assume the Xt variables are independent

and identically distributed, then NT−1 ≡
∑T−1

t=1 Xt ∼ Bin(T − 1, αN). We can perform a

Binomial hypothesis test of H0 : αN = α against H1 : αN 6= α in order to evaluate the

whether the estimator V̂aR(Lt+1, 1−α) has the correct exceedence rate. This is done on a

year-by-year basis in Subsection 4.5.

4.2 SPX Option Surface Data Set as a Functional Time Series

This section describes the SPX option data set and its representation as a functional time

series. It will provide full descriptions of the domain and range variables, and motivate the

use of a functional time series model.

A European option is a financial contract that, at some fixed maturity date in the future,

gives the owner the option to purchase (if a call option) or sell (if a put option) a unit
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of an underlying asset at a fixed strike price, regardless of the actual market price of said

asset. In the case of an SPX option, the underlying asset is the Standard & Poors (S&P)

500 Index.

Our methodology is applied to daily SPX option surfaces sourced from OptionMetrics’s

IvyDB database (2017) from January 1, 2010 to December 31, 2017. There are T = 2013

days in total. Each daily option surface includes between 1400 and 10000 option contracts,

which are differentiated by their strike price, date of maturity, and whether they are call

options or put options. Option prices are quoted based on their Black-Scholes implied

volatility, the log of which is the variable of interest Yt(τ). There is a one-to-one relationship

between the option price and Yt(τ) (see Equation 9). The unfamiliar reader can regard

Yt(τ) as a proxy for option price.

The domain variable τ = (τ 1, τ 2) is two-dimensional with τ 1 ∈ [1,
√

1095] being the square

root of number of days to maturity, and τ 2 ∈ [0, 1] being the call option delta. τ 1 is set

as such because the implied volatility of an option is a function of its remaining time to

maturity instead of the preset date of maturity. τ 2 is set as such because implied volatility

depends on the ratio of the underlying asset price to the strike price (or equivalently, the

option delta) instead of the absolute strike price. The functional domain T is the rectangle

determined by the two univariate domains

τ ≡ (τ 1, τ 2) ∈ T ≡ [1,
√

1095]× [0, 1].

We include both call and put options in our analysis. They share the same implied volatil-

ity if their strike price and maturity match, but their option deltas differ by a deter-

ministic relationship. In order to keep domain variables equivalent for the two types

of options, we convert a put option’s delta to its equivalent call option delta by adding

exp {−Dividend Yield× Time To Maturity} to its value. Refer to Hull (2018) for an intro-

duction to option pricing. Since illiquid option prices have high measurement error, options

whose bid-ask spread is larger than 10% of the premium are excluded from the application.

On any given day t, the observation points τt,1, . . . , τt,nt ∈ T are determined by the options

traded on the market that day. The set of observation points changes every day, motivating
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the use of a functional time series model for the SPX option data set. The observation set

changes each day because the option contracts in the market are issued with a fixed date of

maturity. Hence, the remaining time to maturity τ 1 decreases with each passing day and

all observation points shift towards the short maturity end of the domain with observations

dropping out the domain when contracts mature (τ 1 = 0). Furthermore, new observations

enter the domain whenever new sets of option contracts are issued. Lastly, movements in

the underlying S&P500 Index change the delta τ 2 of all options simultaneously, resulting

in daily lateral shifts in observation points.

4.3 Basis Function Estimation and Exploratory Analysis

This section motivates the use of a functional stochastic volatility model. We estimate

the functional basis {fk}Kk=1 that will be passed into subsequent Bayesian analysis using

FPCA, and present an initial exploratory analysis. The sample time courses and principal

component scores that suggest the functional time series exhibits stochastic volatility.

Based on empirical quantiles of the observation points, the following knot sequences were

used in each dimension of the domain to define the cubic tensor splines:

K1 = [1.4, 1.4, 1.4, 1.4, 8.1, 12.7, 19.3, 33.1, 33.1, 33.1, 33.1], and

K2 = [0.10, 0.10, 0.10, 0.10, 0.37, 0.57, 0.71, 0.79, 0.86, 0.90, 0.90, 0.90, 0.90].

The R package mgcv is used to perform penalized spline smoothing in order estimate the

mean function m(τ) and functional principal components {f1, . . . , fK}. These are shown

in Figure 1.

The mean function m(τ) demonstrates the characteristic “volatility skew” endemic to eq-

uity option markets. The Black-Scholes model assumes a Gaussian distribution for market

returns. If such an assumption were true, the observed volatility surface would be flat.

However, we see that the S&P500 returns exhibit both heavy tails and a negative skew-

ness, leading to convexity and skewness in the mean function respectively.
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Figure 1: Mean Function m(τ) and Functional Principal Components f1(τ), . . . , f5(τ)
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The first principal component f1(τ) is negative in the short end while positive on the

medium to long end of the surface, resulting in a tilt of the surface. The second principal

component f2(τ) results in a bending effect with respect to maturity. The third principal

component f3(τ) tilts the short end of the surface. The fourth principal component f4(τ)

has a similar bending effect as the second but pushes the edges upward in general. The

fifth principal component f5(τ) pushes up one of the corners. As the amount of stochas-

tic volatility observed in the previous section varies year-by-year, the FSV model is fit

separately for each of the 8 years of data.

In an exploratory analysis, we see evidence for stochastic volatility. For five fixed sample

domain points τ1, . . . , τ5, their differenced time courses {Yt+1(τj)−Yt(τj)}T−1
t=1 are shown in

Figure 2. The time-differenced principal component scores shown in Figure 3. Both sets

of series exhibit stochastic volatility and motivate the application of our model.
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Figure 2: Differenced time courses {Yt+1(τj)−Yt(τj)}T−1
t=1 for five sample locations τ1, . . . , τ5,

which exhibit stochastic volatility.

20



Figure 3: Differenced Principal Component Scores βt+1,k − βtk, which exhibit stochastic

volatility.
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4.4 Value-at-Risk Estimation for Option Portfolios

A forecast distribution for portfolio loss is required to estimate quantiles and thus Value-

at-Risk. This section describes how to use the posterior samples {θj}Jj=1 produced by

our MCMC algorithm to build a conditional forecast distribution {L∗jt+1}Jj=1 for a next-day

option portfolio loss random variable Lt+1 = Πt(Yt+1) where Πt : L2(T ) → R. The option

portfolio pricing functional Πt is explicitly described by Equations 9–12. The forecast

distribution {θj}Jj=1 is constructed from Equations 8–11. The key quantity of interest in

financial risk management is the Value-at-Risk (VaR) which is defined by the quantile of a

loss distribution for a given time horizon and is defined in Equation 6.

For this application, the following priors are used for inference:

µk ∼ N(0, 1) ∀k,

(φk + 1)/2 ∼ Beta(20, 1.5) ∀k,

σ2
k ∼ χ2

1 ∀k,

Ψ ∼ Matrix NormalK×K(0K×K , 106IK , IK),

σ2
ε ∼ InvGamma(0.001, 0.001)

The prior for φk follows the example of Kim et al. (1998) and implies a prior mean of 0.86

to reflect the volatility clustering endemic to financial time series, while the priors for µk

and σk do not make a difference with sufficient burn-in. In the matrix normal prior for Ψ,

the scale matrix U = 106IK results in a vague prior. Similarly, the parameters chosen for

σ2
ε result in a vague prior. Since the amount of stochastic volatility varies for each year as

observed in Figures 2 and 3, the FSV model is fit separately each year.

Figure 4 presents the 95% pointwise credible intervals for each of the log-volatility processes

htk against t. Years 2010-2011 and 2015-2017 exhibit a higher degree of roughness in the

random variation, indicating a higher presence of stochastic volatility for these years. This

is further illustrated in Figure 5, which shows the posterior histograms of the stochastic

volatility parameter σ1, as the histograms are bounded away from 0 particularly in the

years 2010-2011 and 2015-2017. The other σk’s show similar results.
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Figure 4: 95% pointwise credible bands for the latent log-volatility process with posterior

median in bold. Dates range from start of 2010 to end of 2017. The roughness of random

variation in htk indicates a notable presence of stochastic volatility in years 2010-2011 and

2015-2017.
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Figure 5: Posterior distributions for σ1, the volatility of ht1. The histograms exhibit most

of their probability mass away from 0 particularly in the years 2010-2011 and 2015-2017,

indicating the presence of stochastic volatility.

For the sake of brevity, it will be understood that a posterior draw will be for the fit on

the year containing t. For each posterior sample of the associated year’s model parameters

θj = ({βt}j,Ψj, σ2j
ε , {ht}j,µj,φj,σj), we forecast the option surface at time t + 1 from

time t as follows:

η∗jt+1 ∼ NK(0, diag{σ2j})

h∗jt+1 = µj + φj · (hjt − µj) + η∗jt+1

u∗jt+1|h
∗j
t+1 ∼ NK(0, diag{eh

∗j
t+1})

β∗jt+1 = Ψjβjt + u∗jt+1

Y ∗jt+1(τ) = F (τ)Tβ∗jt+1

where F (τ) = [f1(τ), . . . , fK(τ)]>.

Given this forecasted implied volatility surface Y ∗jt+1(τ) and observation points {τt+1|t,i}nt
i=1,
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we can compute the Black-Scholes log-implied volatilities {y∗jt+1,i}
nt
i=1 as

y∗jt+1,i = m(τt+1|t,i) + Y ∗jt+1(τt+1|t,i) + ε∗jt+1,i, ε∗jt+1,i
iid∼ N(0, σj2ε ). (8)

With their implied volatilities known, the options in the portfolio can then be priced with

the Black-Scholes formula (Black and Scholes, 1973): If an option’s log-implied volatility

at time t is yt, then its price is given by

Prem(Mt, St, K, CP, rt(Mt), qt, yt) = CP [Ste
−qtMtΦ(CP × d+)−Ke−rt(Mt)MtΦ(CP × d−)]

(9)

d± =
log(St/K) + (rt(Mt)− qt ± 1

2
e2yt)Mt

eyt
√
Mt

(10)

where

• Mt ≡Mt(τ
1) = (τ 1)2/365 is the time to maturity in years at time t,

• St is the spot price of S&P500 at time t,

• K is the option strike price,

• CP =

 1 for a call option,

−1 for a put option,

• rt(M) is the risk-free rate at time t associated with time to maturity M ,

• qt is the dividend yield of S&P500 at time t,

• yt is the log of implied volatility at time t,

• Φ is the standard normal cumulative distribution function.

Suppose on day t the set of traded options are at locations {τt,i}nt
i=1. Then the updated

observation points {τt+1|t,i}nt
i=1 on day t + 1 are calculated as follows: Days to maturity

τ 1
t+1|t,i is reduced by the number of trading days to between time t and t+ 1 (usually 1 day,
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though possibly more for weekends and holidays), and option delta τ 2
t+1|t,i is assumed equal

to the previous day’s value τ 2
t,i. The other option parameters St+1|t, K, rt+1|t(Mt+1), qt+1|t

are held equal to day t’s values St, K, rt(Mt), qt to prevent looking ahead to future data.

Thus for each posterior sample {y∗jt+1,i}
nt
i=1 we can produce joint forecasts for the option

prices {FP ∗jt+1,i}
nt
i=1 where

FP ∗jt+1,i = Prem(Mt+1, St, K, CP, rt(Mt), qt, y
∗j
t+1,i)

These forecasted option prices can then be compared to the actual option prices {APt,i}nt
i=1

and {APt+1,i}nt
i=1 on days t and t+1, respectively, to assess the performance of the forecast.

Given a portfolio with cti units of option i for i = 1, . . . , nt, we can compute the forecasted

loss distribution {L∗jt+1}Jj=1 and actual loss Lt+1 of the portfolio as

L∗jt+1 =
nt∑
i=1

cti[APt,i − FP ∗jt+1,i] (11)

Lt+1 =
nt∑
i=1

cti[APt,i − APt+1,i] (12)

Then an estimate for the (1−α)100% one-day Value-at-Risk for Lt+1 is the sample quantile

of our forecasted loss distribution.

V̂aR(Lt+1, 1− α) = quantile({L∗jt+1}Jj=1, 1− α) (13)

The next step is to assess whether the quantiles of the forecast distribution match the

quantiles of the true loss distribution.

4.5 Backtesting Value-at-Risk

In order to evaluate the accuracy of our Value-at-Risk estimates, we can test if the his-

torically observed frequencies of exceedances of the quantile estimates are consistent with
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Figure 6: Profit diagram for an option strangle portfolio.

the true quantile levels. This process of evaluation based on historical data is known as

backtesting. A 95% Value-at-Risk should be breached by approximately 5% of our observed

losses if the observed trials are independent and our estimate is accurate. We can test for

the latter using the Binomial hypothesis test proposed in Subsection 4.1 and the estimator

proposed in Subsection 4.4.

We focus on option portfolios whose values are most sensitive to movements in volatility.

An option strangle is a portfolio consisting of an out-of-money call option (whose strike is

below the current S&P 500 level) and an out-of-money put option (whose strike is above the

current S&P 500 level) where the call and put strikes are roughly the same distance apart

from the current S&P 500 level. Such portfolios are particularly sensitive to movements

in implied volatility eYt(τ), since a strangle profits from large moves in the S&P but loses

money on small moves. The profit diagram of a strangle portfolio is illustrated in Figure

6.

The proposed binomial test in Subsection 4.1 requires independent trials, so we use a

different randomized option portfolio on each trading day in order to decorrelate the trials.

To construct these randomized portfolios, on each day t = 1, . . . , T − 1, a set of random

out-of-money options are chosen from the subset of options common to both days t and

t+ 1 so that the actual price movement can be computed. These out-of-money options are

chosen in 25 unique pairs of calls and puts so that we can form strangle positions. Hence,

if a call option with strike price K1 > St is selected, then the put option whose strike is

closest to K2 = St − (K1 − St) is also chosen so that the put and call options are roughly
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the same distance apart from the current spot price with both options out-of-money.

For each t = 1, . . . , 2012, consider a simple randomized portfolio {cti}50
i=1 on these 50 options

where each cti is either 1 or -1 with equal probability. These coefficients determine the

portfolio pricing functionals {Πt} through Equations 11 and 12. Since the actual price

movements of these portfolios are known, we can perform the proposed binomial hypothesis

test in Subsection 4.1 for the one-day Value-at-Risk estimator in Equation 13. A separate

Binomial test is done for each year, and the 95% confidence intervals of the exceedence

rates of VaR95, VaR97.5, and VaR99 are shown in blue in Figure 7.

For comparison, we also made forecasts based on a benchmark model with constant volatil-

ity. The benchmark model assumes each coefficient series {βtk}Tt=1 has constant volatility

vk, and denoting v = (v1, . . . , vK)>,

yt = mt + Ftβt + εt, εt ∼ Nnt(0, σ
2
εI) ∀t ≥ 1,

βt = Ψβt−1 + γt, γt ∼ NK(0, diag{v}) ∀t ≥ 1.

Each vk is assigned an independent InvGamma(ak, bk) prior . The full conditional for v is

standard, and all other full conditionals remain the same with the substitution ht = log(v)

for each t. The results in Figure 7 indicate that the exceedence rates of the stochastic

volatility VaR’s are generally closer to the true quantile levels than those of the constant

volatility VaR’s, as the stochastic volatility model yields confidence intervals that capture

the true level in almost all years, while the constant volatility model’s confidence intervals

miss far more frequently. These findings indicate that incorporating stochastic volatility

leads to better quantile estimates.
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Figure 7: 95% confidence intervals for the exceedence rates of Value-at-Risk.

29



5 Conclusion

In this article, we have formulated an analogue of the familiar stochastic volatility model

for functional time series, and constructed an example motivated through an application.

We have derived a Bayesian hierarchical specification which can be used for uncertainty

quantification, forecasting, and quantile estimation. We have demonstrated through the

application an empirical example of functional stochastic volatility in SPX option surfaces

and have shown how our methodology is well-suited for the daily shifts in the observation

set. Through our exploratory analysis, and later in Figures 4 and 5, we have shown ev-

idence of stochastic volatility in the functional time series. We have also shown through

a backtesting exercise that the functional stochastic volatility model can improve quan-

tile estimates for random functionals of the surfaces, which is of benefit in Value-at-Risk

estimation for option portfolios.

6 Appendix

6.1 Hilbert-Schmidt Theorem and Dimension Reduction

Assuming T is uncountable, the functional time series {Yt} represents a random process

with uncountably infinite dimension, but its reduction to a countably infinite L2 approxi-

mation can be justified using the Hilbert-Schmidt theorem.

Let vt(τ) = eht(τ), h̃t(τ) = ht(τ)− µ(τ), and

h̃t(τ) = c(τ) +

∫
T
φ(τ, u)h̃t−1(u)du+ ζt(τ)

Suppose the parameter functions µ, ψ, kζ of the volatility process are such that {Yt} is a

mean-zero covariance stationary process with a defined unconditional covariance function

Cov(ηt(τ), ηt(u)) = kη(τ, u) ∀t.
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If kη ∈ L2(T × T ), then the associated covariance operator f 7→
∫
T kη(·, u)f(u)du is a

Hilbert-Schmidt operator on L2(T ), so by the Hilbert-Schmidt theorem we can decompose

the covariance function kη by its spectral expansion

kη(τ, u)
L2

=
∞∑
k=1

λkfk(τ)fk(u)

where the eigenfunctions {fk}∞k=1 form an orthonormal basis of L2(T ) and the eigenvalues

{λk}∞k=1 are a non-negative decreasing square-summable sequence. For T compact we can

strengthen the result to uniform convergence with Mercer’s theorem if kη(τ, τ) ∈ L1(T ) or

kη(τ, u) is continuous.

To reduce from countably-infinite dimension to finite dimension, we appeal to the Karhunen-

Loève theorem and truncate to the first K principal components {fk}Kk=1. We can get an

empirical estimate of these eigenfunctions using FPCA on the sample covariance function

of the spline-smoothed surfaces {Ŷt}:

k̂η(τ, u) =
1

T

T∑
t=1

Ŷt(τ)Ŷt(u)

If we assume ηt ∈ Span{f1, . . . , fK} as in Section 2.3, then we can then write the conditional

covariance functions as

Cov(ηt(τ), ηt(u)|Ft−1) =
K∑
k=1

ehtkfk(τ)fk(u)

and our model for functional stochastic volatility reduces to a vector stochastic volatility

model on the log-eigenvalues {ht}. We know that {ht} is a stochastic volatility model since

ht depends on ζt which is not Ft−1 measurable.

6.2 Sampling the Full Conditional for β

For the sake of brevity, in this section ex for a vector x ∈ Rd will be shorthand for the

d× d diagonal matrix diag{ex}.
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The precision matrix Λβ takes on the following block matrix form, where each block is

K ×K, and there are T rows and T columns of blocks:

Λβ = F>F + σ2
εP
>e−hP

=


F>1 F1 0 · · · 0

0 F>2 F2 · · · 0
...

...
. . .

...

0 0 · · · F>T FT



+ σ2
ε


I −Ψ> · · · 0

0 I · · · 0
...

...
. . . −Ψ>

0 0 · · · I




e−h1 0 · · · 0

0 e−h2 · · · 0
...

...
. . . 0

0 0 · · · e−hT




I 0 · · · 0

−Ψ I · · · 0
...

...
. . . 0

0 · · · −Ψ I



=


G1 H>1 · · · 0

H1 G2
. . . 0

...
. . . . . . H>T−1

0 · · · HT−1 GT


where

Gt =

F
>
t Ft + σ2

εe
−ht + σ2

εΨ
>e−ht+1Ψ for t = 1, . . . , T − 1

F>T FT + σ2
εe
−hT for t = T

and

Ht = −σ2
εe
−ht+1Ψ for t = 1, . . . , T − 1

As Λβ is a block tridiagonal matrix, its Cholesky factor L is bidiagonal where Λβ = LL>

as follows:

Λβ =


G1 H>1 · · · 0

H1 G2
. . . 0

...
. . . . . . H>T−1

0 · · · HT−1 GT

 =


Q1 0 · · · 0

R1 Q2
. . . 0

...
. . . . . . 0

0 · · · RT−1 QT


︸ ︷︷ ︸

L


Q>1 R>1 · · · 0

0 Q>2
. . . 0

...
. . . . . . R>T−1

0 · · · 0 Q>T


︸ ︷︷ ︸

L>
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Blockwise multiplication yields the following system of equations:

G1 = Q1Q
>
1

Ht = RtQ
>
t for t = 1, . . . , T − 1

Gt = Rt−1R
>
t−1 +QtQ

>
t for t = 2, . . . , T

and therefore we can recursively construct the blocks of L as follows:

Q1 = Chol(G1)

Rt = HtQ
−>
t for t = 1, . . . , T − 1

Qt = Chol(Gt −Rt−1R
>
t−1) for t = 2, . . . , T

Hence to compute µβ = Λ−1
β F>(y −m) = L−>L−1F>(y −m), we can successively solve

the systems below

Lµ̃β = F>(y −m)

L>µβ = µ̃β

To obtain the explicit solution, first write the vectors as follows:

µβ =


m̂1

...

m̂T

 , µ̃β =


m̃1

...

m̃T

 , F>(y −m) =


ξ1

...

ξT


where each entry above is a K × 1 sub-vector.

To solve for µ̃β from Lµ̃β = F>(y −m),
Q1 0 · · · 0

R1 Q2
. . . 0

...
. . . . . . 0

0 · · · RT−1 QT



m̃1

...

m̃T

 =


ξ1

...

ξT


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we have

m̃t =

Q
−1
1 ξ1 for t = 1,

Q−1
t (ξt −Rt−1m̃t−1) for t = 2, . . . , T

.

Then to solve for µβ from L>µβ = µ̃β,
Q>1 R>1 · · · 0

0 Q>2
. . . 0

...
. . . . . . R>T−1

0 · · · 0 Q>T



m̂1

...

m̂T

 =


m̃1

...

m̃T


we have

m̂t =

Q
−>
T m̃T for t = T,

Q−>t (m̃t −R>t m̂t+1) for t = T − 1, . . . , 1

.

Lastly, to sample the full conditional of β, we draw a TK × 1 vector

z =


z1

...

zT

 ∼ NTK(0, I)

where each zi is a K × 1 sub-vector. To compute βpost = µβ + σεL
−>z, segment βpost into

K × 1 subvectors

βpost =


βpost

1

...

βpost
T

 =


m̂1 + σεẑ1

...

m̂T + σεẑT


and compute

ẑt =

Q
−>
T zT for t = T,

Q−>t (zt −R>t ẑt+1) for t = T − 1, . . . , 1
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6.3 Derivation of Full Conditional for Ψ

Consider a matrix normal prior for Ψ ∼ Matrix NormalK,K(M,U, V ):

p(Ψ) = (2π)−K
2/2|U |−K/2|V |−K/2 exp

(
−1

2
tr[V −1(Ψ−M)>U−1(Ψ−M)]

)

Let Σt = diag(exp(ht)). Then

p(Ψ|y,β,h, σ2
ε) ∝ p(β|h,Ψ)p(Ψ)

∝ exp

(
−1

2

T∑
t=2

(βt −Ψβt−1)>Σ−1
t (βt −Ψβt−1)− 1

2
tr[V −1(Ψ−M)>U−1(Ψ−M)]

)
= exp (−Ω)

It is sufficient to look at the quadratic form Ω to determine the full conditional distribution.

Ω =
1

2

T∑
t=2

(βt −Ψβt−1)>Σ−1
t (βt −Ψβt−1) +

1

2
tr
[
V −1(Ψ−M)>U−1(Ψ−M)

]
=

1

2

T∑
t=2

(
βtβ

>
t−1

‖βt−1‖2
βt−1 −Ψβt−1

)>
Σ−1
t

(
βtβ

>
t−1

‖βt−1‖2
βt−1 −Ψβt−1

)
+

1

2
tr
[
V −1(Ψ−M)>U−1(Ψ−M)

]
=

1

2

T∑
t=2

β>t−1

(
Ψ−

βtβ
>
t−1

‖βt−1‖2

)>
Σ−1
t

(
Ψ−

βtβ
>
t−1

‖βt−1‖2

)
βt−1

+
1

2
tr
[
V −1(Ψ−M)>U−1(Ψ−M)

]
=

1

2

T∑
t=2

tr

[
β>t−1

(
Ψ−

βtβ
>
t−1

‖βt−1‖2

)>
Σ−1
t

(
Ψ−

βtβ
>
t−1

‖βt−1‖2

)
βt−1

]
+

1

2
tr
[
V −1(Ψ−M)>U−1(Ψ−M)

]
=

1

2

T∑
t=2

tr
[
(Ψ− ξt)>Σ−1

t (Ψ− ξt)βt−1β
>
t−1

]
+

1

2
tr
[
(Ψ−M)>U−1(Ψ−M)V −1

]
where ξt =

βtβ>t−1

‖βt−1‖2 . Using the identity

tr(A>BCD>) = vec(A)>(D ⊗B)vec(C)
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we have

Ω =
1

2

T∑
t=2

[vec(Ψ)− vec(ξt)]
> (βt−1β

>
t−1 ⊗ Σ−1

t ) [vec(Ψ)− vec(ξt)]

+
1

2
[vec(Ψ)− vec(M)]> (V −1 ⊗ U−1) [vec(Ψ)− vec(M)]

=
1

2
vec(Ψ)>

[
T∑
t=2

(βt−1β
>
t−1 ⊗ Σ−1

t ) + (V −1 ⊗ U−1)

]
vec(Ψ)

− vec(Ψ)>

[
T∑
t=2

(βt−1β
>
t−1 ⊗ Σ−1

t )vec(ξt) + (V −1 ⊗ U−1)vec(M)

]
+ const

After simplifying the terms below,

(βt−1β
>
t−1 ⊗ Σ−1

t )vec(ξt) = (βt−1β
>
t−1 ⊗ Σ−1

t )
vec(βtβ

>
t−1)

‖βt−1‖2

= vec(Σ−1
t βt

β>t−1

‖βt−1‖2
βt−1β

>
t−1)

= vec(Σ−1
t βtβ

>
t−1)

(V −1 ⊗ U−1)vec(M) = vec(U−1MV −1)

we get

Ω =
1

2
vec(Ψ)>

[
T∑
t=2

(βt−1β
>
t−1 ⊗ Σ−1

t ) + (V −1 ⊗ U−1)

]
vec(Ψ)

− vec(Ψ)>vec

(
T∑
t=2

Σ−1
t βtβ

>
t−1 + U−1MV −1

)
+ const

which is the quadratic form for the multivariate normal below:

vec(Ψ)|y,β,h, σ2
ε ∼ NK2(µΨ,ΣΨ)

µΨ = ΣΨvec

(
T∑
t=2

Σ−1
t βtβ

>
t−1 + U−1MV −1

)

ΣΨ =

[
T∑
t=2

(βt−1β
>
t−1 ⊗ Σ−1

t ) + (V −1 ⊗ U−1)

]−1
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Sen, R. and C. Klüppelberg (2019). Time series of functional data with application to yield

curves. Applied Stochastic Models in Business and Industry 35 (4), 1028–1043.

Shang, H. (2013). Functional time series approach for forecasting very short-term electricity

demand. Journal of Applied Statistics 40 (1), 152–168.

Shang, H. L., H. Booth, and R. Hyndman (2011). Point and interval forecasts of mor-

tality rates and life expectancy: A comparison of ten principal component methods.

Demographic Research 25, 173–214.

41



Shephard, N. (1996). Statistical aspects of ARCH and stochastic volatility ((edited by

D.R. Cox, David V. Hinkley and Ole E. Barndorff-Neilsen) ed.)., pp. 1–67. London:

Chapman & Hall. Reprinted in the Survey of Applied and Industrial Mathematics, issue

on Financial and insurance mathematics, 3, 764-826, Scientific Publisher TVP, Moscow,

1996 (in Russian).

Shephard, N. and T. G. Andersen (2009). Stochastic Volatility: Origins and Overview, pp.

233–254. Berlin, Heidelberg: Springer Berlin Heidelberg.

Taylor, S. (1982). Financial returns modelled by the product of two stochastic processes-a

study of the daily sugar prices 1961-75. Time Series Analysis : Theory and Practice 1,

203–226.

Taylor, S. (1986). Modelling Financial Time Series. Wiley.

Taylor, S. (1994, April). Modelling stochastic volatility: a review and comparative study.

Mathematical Finance 4 (2), 183–204.

Vrontos, I. D., P. Dellaportas, and D. N. Politis (2003). A full-factor multivariate garch

model. The Econometrics Journal 6 (2), 312–334.

Yasmeen, F. and M. Sharif (2015, 09). Functional time series (fts) forecasting of electricity

consumption in pakistan. International Journal of Computer Applications 124, 975–8887.

Yu, J. and R. Meyer (2006). Multivariate stochastic volatility models: Bayesian estimation

and model comparison. Econometric Reviews 25 (2-3), 361–384.

42


