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ABSTRACT

Stochastic volatility, or variability that is well approximated as a random process,

is widespread in modern finance. While understanding that volatility is essential for

sound decision making, the structural and data constraints associated with complex

financial instruments limit the applicability of classical volatility modeling. This

article investigates stochastic volatility in functional time series with the goal of

accurately modeling option surfaces. We begin by introducing a functional analogue

of the familiar stochastic volatility models employed in univariate and multivari-

ate time series analysis. We then describe how that functional specification can

be reduced to a finite dimensional vector time series model and discuss a strategy

for Bayesian inference. Finally, we present a detailed application of the functional

stochastic volatility model to daily SPX option surfaces. We find that the func-

tional stochastic volatility model, by accounting for the heteroscedasticity endemic

to option surface data, leads to improved quantile estimates. More specifically, we

demonstrate through backtesting that Value-at-Risk estimates from the proposed

functional stochastic volatility model exhibit correct coverage more consistently than

those of a constant volatility model.
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1. Introduction

A functional time series {Yt(τ)} is a time-ordered sequence (t = 1, 2, . . .) of random

functions often used to model the time dynamics of random phenomena that live on

a continuum (τ ∈ T ). Functional time series models enable statistical analysis and

prediction of curves and surfaces evolving over time. The study of functional time

series has become increasingly relevant as the collection of data in high resolution or

frequency has become commonplace.

Functional time series can offer key practical advantages over multivariate or

vector time series. By modeling random phenomena on a continuum, functional time

series meet the needs of real world applications in which measurement locations are

often sparse, changing over time, or irregularly spaced. Applying multivariate time

series methods in similar settings would require that measurements lie on a regu-

lar unchanging grid and demand special handling of missing data. Furthermore, the

number of parameters associated with a vector time series model would grow with

the number of measurement locations and quickly become unreasonable, whereas the

parametrization of a functional time series model is independent of the measurement

locations.

More fundamentally, functional time series methods extend the domain of func-

tional data analysis to time dependent functional data. While the celebrated results of

Karhunen (1947) and Loève (1945) imply that functional principal component analysis

(FPCA) provides an optimal finite dimensional representation for i.i.d. functional data,

that optimality no longer holds when observations exhibit time dependence. However,

FPCA provides a foundation for the development of methods intended specifically for

time dependent functional data. Further background on the foundations of functional

data analysis and FPCA can be found in Ramsay et al. (2005), Horváth and Kokoszka

(2012), and Hsing and Eubank (2015).

Functional time series methods have found application in a wide variety of do-

mains such as demographic forecasting (Hyndman and Booth 2008; Shang et al. 2011;

Hyndman et al. 2013; Li et al. 2020), spatiotemporal modeling (Besse et al. 2000;

Ruiz-Medina et al. 2013; Cressie and Wikle 2015; Jang and Matteson 2018; King et al.
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2018), yield curve forecasting (Kowal et al. 2017; Sen and Klüppelberg 2019; Kowal

et al. 2019), high frequency finance (Hörmann et al. 2013; Aue et al. 2017; Li et al.

2020; Huang et al. 2020), traffic flow modeling (Klepsch et al. 2017), and electricity

demand forecasting (Shang 2013; Yasmeen and Sharif 2015; Chen and Li 2017).

Many important multivariate time series models have been generalized to a func-

tional setting. The functional analogue of the autoregressive integrated moving average

(ARIMA) model has been developed by several authors. Bosq (2000) developed the

theoretical foundations of the functional autoregression model on Hilbert and Banach

spaces, while Aue and Klepsch (2017) studied the functional moving average model.

Klepsch et al. (2017) derived sufficient conditions for the wide-sense stationarity of

a functional ARMA model on separable Hilbert spaces. Sen and Klüppelberg (2019)

explored how a functional ARMA model leads to a vector ARMA structure on the

principal component scores. Li et al. (2020) addressed long memory in functional time

series by developing fractionally differenced functional ARIMA models. Developments

related to forecasting functional time series appear in Hyndman and Shahid Ullah

(2007), Bosq (2014), and Aue et al. (2015). Kowal et al. (2017) and Kowal et al.

(2019) introduced a Bayesian framework for functional time series through a dynamic

linear model formulation.

Compared to the extensive literature on functional generalizations of ARIMA and

dynamic linear models, relatively little has been written on the important problem of

modeling heteroscedasticity in functional time series. In time series analysis, account-

ing for heteroscedasticity or time-varying volatility is critical to accurate and reliable

uncertainty quantification in forecasting problems. Heteroscedasticity is commonly

addressed through autoregressive conditional heteroscedasticity (ARCH) models, gen-

eralized autoregressive conditional heteroscedasticity (GARCH) models, or stochas-

tic volatility (SV) models. In univariate time series, the ARCH model was proposed

by Engle (1982) and the GARCH model by Bollerslev (1986), while the univariate

SV model was proposed by Taylor (1982) and Taylor (1986), with further investiga-

tions and comparisons by Taylor (1994), Shephard (1996), and Ghysels et al. (1996)

among others. Multivariate GARCH models were examined in Bollerslev et al. (1988)

and Bollerslev (1990), while multivariate SV models were considered in Harvey et al.
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(1994), Daniélsson (1998), and Asai et al. (2006). Bayesian methods for multivariate

GARCH and SV models were proposed in Vrontos et al. (2003) and Yu and Meyer

(2006), respectively. To date, there have been several important contributions on the

topic of heteroscedastic functional time series models. Hörmann and Kokoszka (2010)

formalized the notion of weakly dependent functional time series, while Hörmann et al.

(2014) addressed serial correlation through a dynamic Karhunen-Loève expansion, a

functional analogue of the dynamic principal component analysis introduced for mul-

tivariate time series in Brillinger (1981). Hörmann et al. (2013) and Aue et al. (2017)

proposed functional ARCH and GARCH models, respectively.

This article investigates stochastic volatility in the functional time series set-

ting. In ARCH/GARCH models, the conditional volatility process is a deterministic

function of past data, while in SV models the conditional volatility is driven by its

own stochastic process and is not measurable with respect to past observable infor-

mation. Although seemingly less popular in applications, stochastic volatility models

have been observed to provide a better fit with fewer parameters when compared to

GARCH models (Daniélsson 1998; Kim et al. 1998). SV models also provide a natural

discrete analogue to the stochastic differential equations used in option pricing, such

as the stochastic volatility diffusion of Hull and White (1987).

Stochastic volatility is ubiquitous in financial time series modeling, as it is often

observed empirically in the dynamics of asset prices and returns (Hull and White 1987;

Heston 1993; Heston and Nandi 2000; Gatheral 2006; Shephard and Andersen 2009).

Accordingly, we illustrate the benefits of our functional stochastic volatility (FSV)

model in a financial application and model the daily price movements of SPX options

contracts1. For each day from January 1, 2010 to December 31, 2017, we have quotes of

hundreds to thousands of option contracts which differ by their strike price and time to

maturity. These contracts can be understood as a discrete collection of points observed

from an underlying continuous option surface. Exploratory analyses indicate that these

SPX option surfaces exhibit stochastic volatility. We demonstrate through a backtest

that the FSV model leads to more accurate estimates of the portfolio Value-at-Risk

(VaR) compared to a constant volatility model as its quantile estimates consistently

1SPX options have the Standard and Poor’s 500 Index as the underlying asset.
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exhibit the correct coverage. Hence the FSV model can benefit portfolio managers,

risk managers, and other practitioners who need to monitor risk metrics of portfolios

containing futures, options, swaptions, and other derivatives whose price dynamics are

determined by an underlying continuum. More broadly, the FSV model can benefit

any forecaster who is concerned not only with prediction but also quantile estimation

and uncertainty quantification for functional time series data.

We now outline the remainder of the article. Section 2 describes the FSV and

justifies consideration of a finite-dimensional form. Section 3 addresses Bayesian infer-

ence for the FSV model. Section 4 presents the application of the FSV model to SPX

option portfolio risk management.

2. Method

In time series analysis, data often exhibit both time-varying volatility and autocorre-

lation. Therefore, SV models are commonly used in conjunction with ARMA models

by allowing the innovations of the ARMA process to have time-varying volatility. In

this section, we formulate the FSV model in the context and notation of a functional

ARMA model. Then we show how the FSV model can be reduced to a tractable fi-

nite dimensional representation that facilitates inference with familiar techniques from

vector time series. Lastly, we describe the basis functions used for dimension reduction.

2.1. Functional Stochastic Volatility

We define an FSV model as a sequence of random functions that can be decomposed

as the product of a volatility process with a serially uncorrelated noise process. More

precisely, let T ⊆ Rd be compact and let L2(T ) be the set of square-integrable func-

tions defined on T . Suppose ηt is a sequence of random functions in L2(T ) that can

be decomposed as the product

ηt(τ) = vt(τ)zt(τ)

where
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(1) {zt} is a sequence of i.i.d. mean zero random functions in L2(T ) with a common

correlation function kz(τ, u) = Cov [zt(τ), zt(u)] for all t so that kz(τ, τ) = 1 for

all τ,

(2) {vt} is a sequence of non-negative random functions in L2(T ),

(3) {zt} and {vt} are independent.

Then {ηt} is a functional stochastic volatility process if, for all t, the conditional

volatility function vt is not measurable with respect to the sigma field generated by

{(vs, ηs)}t−1
s=1. This is in contrast to a functional ARCH or GARCH process where vt

is measurable with respect to the above sigma field. The FSV process will drive the

functional ARMA process introduced in the next section.

2.2. Functional ARMA with Stochastic Volatility

We assume that the data of interest arise from an underlying functional ARMA process

{Yt} driven by an FSV process as defined in the previous section. More precisely,

suppose for each time t that Yt is observed at nt ≥ 0 locations with measurement

error as yt,i = m(τt,i) + Yt(τt,i) + εt,i where τt,1, . . . , τt,nt
∈ T are the observation

locations, m(τ) is the mean function, and εt,i
iid∼ N(0, σ2ε) is the measurement error.

The functional ARMA(p,q) model for {Yt} satisfies

Yt(τ) = ηt(τ) +

p∑
i=1

∫
T
ψi(τ, u)Yt−i(u)du−

q∑
j=1

∫
T
θj(τ, u)ηt−j(u)du (1)

where {ηt} is a sequence of mean zero random functions with E ∥ηt∥2 ≡

E
[∫

T ηt(τ)
2dτ
]
< ∞ and E[ηt(τ)ηs(τ)] = 0 when t ̸= s for all τ. In other words, the

functions {ηt} are uncorrelated across time but not necessarily independent. These

conditions are satisfied by the FSV model in Section 2.1, and hereafter we will sup-

pose that {ηt} is an FSV process. The parameter kernel functions {ψi} and {θj} are

analogous to the parameter matrices in an multivariate ARMA model and determine

the time-varying conditional mean.

Previous work has established sufficient conditions for the existence of a unique

wide-sense stationary and causal solution to Equation 1. Suppose the volatility pro-
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cess {vt} is wide-sense stationary so that there exists a common function kv(τ, u) =

E[vt(τ)vt(u)] for all t, implying that kη(τ, u) = E[ηt(τ)ηt(u)] = kv(τ, u)kz(τ, u). It is

shown in Theorem 3.8 of Klepsch et al. (2017) and in Li et al. (2020) that a unique

wide-sense stationary and causal solution exists provided that kη and {θj} are Hilbert-

Schmidt kernels so that
∫
T
∫
T kη(τ, u)

2dτdu < ∞ and
∫
T
∫
T θj(τ, u)

2dτdu < ∞ for

each j, and {ψi} satisfies the summability condition

p∑
i=1

[∫
T

∫
T
ψi(τ, u)

2dτdu

]1/2
< 1.

The functional ARMA model can be defined more generally with bounded linear op-

erators acting on separable Hilbert spaces as in Klepsch et al. (2017).

For the sake of simplicity and computational tractability, we will work with the

functional AR(1) process and drop the index on the kernel function ψ1 so that

Yt(τ) =

∫
T
ψ(τ, u)Yt−1(u)du+ ηt(τ).

2.3. Reducing a Functional Time Series to a Vector Time Series

The functional ARMA model becomes more tractable upon making a few assumptions.

In particular, we suppose there exist orthonormal deterministic functions f1, . . . , fK ∈

L2(T ) such that the following conditions hold:

(1) The functional ARMA process {Yt} lies in Span (f1, . . . , fK) . In that case, there

exist random coefficient vectors βt = (βt1, . . . , βtK)⊤ and γt = (γt1, . . . , γtK)⊤

with βtk =< Yt, fk > and γtk =< ηt, fk > such that Yt =
∑K

k=1 βtkfk and

ηt =
∑K

k=1 γtkfk. Because the functions f1, . . . , fK are orthogonal, the entries of

each βt vector are uncorrelated, as are the entries of each γt vector.

(2) The kernel ψ(τ, u) ∈ Span (f1, . . . , fK) ⊗ Span (f1, . . . , fK), so there exists a

K ×K coefficient matrix Ψ = [ψkj ] such that

ψ(τ, u) =

K∑
k=1

K∑
j=1

ψkjfk(τ)fj(u)
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where ψkj =<< ψ(⋆, ·), fj(·) >, fk(⋆) >=
∫
T
∫
T ψ(τ, u)fj(u)fk(τ)dudτ .

(3) The coefficient vectors γt are a time-dependent sequence of random vectors with

γt | Ft−1 ∼ NK(0,Σγt
)

and the conditional covariance function of ηt(τ) is defined and satisfies

Cov [ηt(τ), ηt(u) | Ft−1] ≡ kηt
(τ, u) =

K∑
k=1

ehtkfk(τ)fk(u)

where Ft is the sigma field generated by {γs}ts=1 and {hs}ts=1 with ht =

(ht1, . . . , htK)⊤.

Under assumptions 1-3 above, the coefficients {βt}Tt=1 form a K-dimensional first

order vector autoregressive, or VAR(1), process satisfying

βt = Ψβt−1 + γt

γt | Ft−1 ∼ NK(0,Σγt
)

where Σγt
is assumed diagonal and equal to diag

(
eht
)
. The coefficient series {βt}Tt=1

is a VAR(1) process with stochastic volatility as the conditional covariance matrix of

γt depends on the random vector ht and thus is not Ft−1-measurable.

In this article, we use VAR(1) dynamics for ht, a choice well-suited for modeling

volatility clustering. More precisely, we suppose

ht = µ+Φ(ht−1 − µ) + ζt

ζt
iid∼ NK(0,Σζ).

For the sake of parsimony, we assume the matrices Φ and Σζ are diagonal and that

the series {htj}Tt=1 is independent of the series {htk}Tt=1 for all distinct pairs of indices
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j and k. Thus, for K-dimensional parameter vectors ϕ and σζ , we have

ht = µ+ ϕ⊤(ht−1 − µ) + ζt

ζt
iid∼ NK

[
0, diag

(
σ2
ζ

)]
.

Letting yt = (yt,1, . . . , yt,nt
)⊤, mt = [m(τt,1), . . . ,m(τt,nt

)]⊤, (Ft)i,k = fk(τt,i),

βt = (βt1, . . . , βtK)⊤, εt = (εt,1, . . . , εt,nt
)⊤, (Ψ)k,j = ψkj , ht = (ht1, . . . , htK)⊤, γt =

(γt1, . . . , γtK)⊤, µ = (µ1, . . . , µK)⊤, ϕ = (ϕ1, . . . , ϕK)⊤, σζ = (σ1, . . . , σK)⊤, and

ζt = (ζt1, . . . , ζtK)⊤ , we can succinctly summarize our hierarchical model as follows:

yt = mt + Ftβt + εt, εt ∼ Nnt

(
0, σ2εI

)
, (2)

βt = Ψβt−1 + γt, γt | ht ∼ NK

[
0,diag

(
eht

)]
, (3)

ht = µ+ ϕ⊤(ht−1 − µ) + ζt, ζt ∼ NK

[
0,diag

(
σ2
ζ

)]
, (4)

h1 ∼ NK

[
µ,diag

(
σ21

1− ϕ21
, ...,

σ2K
1− ϕ2K

)]
(5)

where

(1) {εt} and {ζt} are independent across time and with each other,

(2) {εt} is independent of {γt},

(3) γt is conditionally independent of {γs}t−1
s=1 given ht, and

(4) h1 is independent of everything else.

2.4. Basis Function Selection

A functional time series represents an infinite-dimensional random process, but in prac-

tical implementations we seek a finite-dimensional representation which, under suitable

regularity conditions, best approximates the underlying process with minimal infor-

mation loss. In our application, we use the first K functional principal components,

estimated from spline-smoothed functional data, as our basis functions f1, . . . , fK .

Refer to Appendix Section A for further justification.
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3. Inference

This section describes Bayesian inference for the FSV model. Subsection 3.1 briefly

introduces Gibbs sampling, while Subsection 3.2 presents the prior specification and

resulting full conditional distributions.

3.1. Markov Chain Monte Carlo and Gibbs Sampling

Suppose our observed data y1, . . . , yn are sampled from a joint density p(y1, . . . , yn | θ)

where θ ∈ Θ represents the parameters of the model. Let p(θ) be the prior density on

θ. The posterior density after observing y1, . . . , yn is given by

p(θ | y1, . . . , yn) =
p(y1, . . . , yn | θ)p(θ)∫
p(y1, . . . , yn | θ′)p(θ′)dθ′ ∝ p(y1, . . . , yn | θ)p(θ).

For many complex models, the posterior density cannot be evaluated analytically

because the integral in the denominator is intractable. To address this problem, Markov

Chain Monte Carlo (MCMC) methods construct a Markov chain on the parameter

space that has the posterior as its stationary distribution. The sample path of the

Markov chain can then be used to approximate posterior summaries, functionals, or

other quantities of interest.

The Gibbs sampling algorithm proceeds by partitioning the parameter space into

disjoint blocks such that Θ = Θ1 × . . . × ΘM and then iteratively sampling from the

full conditional distributions p(θ1 | {yi}ni=1, {θm}m̸=1), . . . , p(θM | {yi}ni=1, {θm}m ̸=M ).

The full conditional distributions are often analytically tractable even when the joint

posterior distribution is not. One advantage of the Gibbs sampling approach is that

it does not require any tuning parameters. The Gibbs sampling algorithm is also

modular, allowing one to plug in existing techniques to sample from the full conditional

distributions when they are available. Refer to Gelman et al. (2013) for an overview

of MCMC, Gibbs sampling, and Bayesian data analysis.
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3.2. Prior Specification and Full Conditional Distributions

This section presents the prior specification for the FSV model and the resulting

full conditional distributions. In order to write these succinctly, we introduce matrix

variate notation to simplify Equations 2-5 in Section 2.3.

From the terms in Equations 3-5, we define the following KT -dimension random

vectors β =
(
β⊤
1 , . . . ,β

⊤
T

)⊤
, γ =

(
γ⊤
1 , . . . ,γ

⊤
T

)⊤
, and h =

(
h⊤
1 , . . . ,h

⊤
T

)⊤
. Then the

random vectors satisfy

Pβ = γ (6)

where

P =



IK 0K 0K ... 0K

−Ψ IK 0K ... 0K

0K −Ψ IK ... 0K

... ... ...
. . . ...

0K 0K 0K ... IK


.

and IK and 0K denote the K ×K identity and zero matrices respectively.

From the terms in Equation 2, we set ny ≡
∑T

t=1 nt and define the ny-dimensional

random vectors y =
(
y⊤
1 , . . . ,y

⊤
T

)⊤
, m =

(
m⊤

1 , . . . ,m
⊤
T

)⊤
, and ε =

(
ε⊤1 , . . . , ε

⊤
T

)⊤
,

along with the block diagonal matrix F = diag (F1, . . . ,FT ). Then we have

y = m+ Fβ + ε.

Writing the SV parameters as θh = (µ,ϕ,σζ), it follows from Equation 2 that

y | β,h,θh,Ψ, σ2ε ∼ Nny
(m+ Fβ, σ2εI)
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and

p
(
y | β,h,θh,Ψ, σ2ε

)
= (2πσ2ε)

−ny/2 exp

(
−∥y −m− Fβ∥2

2σ2ε

)
.

For the log-variance process h and its associated SV parameters θh, the priors are

assigned as in Kim et al. (1998) and Kastner and Frühwirth-Schnatter (2014). More

specifically, the conditional prior of h given θh factors as

p(h | θh) = p(h1 | θh)
T∏
t=2

p(ht | ht−1,θh)

where

ht | ht−1,θh ∼ NK

[
µ+ ϕ⊤(ht−1 − µ),diag

(
σ2
ζ

)]
h1 | θh ∼ NK

[
µ,diag

(
σ21

1− ϕ21
, ...,

σ2K
1− ϕ2K

)]
,

and the priors of the SV parameters θh are independent so that

p(θh) =

K∏
k=1

p(µk)p(ϕk)p(σ
2
k)

with

µk ∼ N(bµ, Bµ)

(1 + ϕk)/2 ∼ Beta(aϕ, bϕ)

σ2k ∼ Bσ · χ2
1 ≡ Bσ ·Gamma

(
1

2
,

1

2Bσ

)

for all k.

To the remaining parameters, we assign the following priors, which yield closed
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form full conditional distributions:

β | h,Ψ ∼ NTK

[
0TK ,P

−1diag
(
eh
)
P−⊤

]
,

Ψ ∼ Matrix NormalK,K(M ,U ,V ),

σ2ε ∼ InvGamma(aε, bε),

where Matrix NormalK,K(M ,U ,V ) indicates a K × K matrix normal distribution

with mean matrix M and scale matrices U and V . The density function is given

in Appendix Section C. The notation InvGamma(aε, bε) indicates an inverse gamma

distribution with shape parameter aε and scale parameter bε.

In summary, all full conditional densities will be proportional to the joint density

of (y,β,h,θh,Ψ, σ
2
ε) which factors as

p(y,β,h,θh,Ψ, σ
2
ε) = p(y | β, σ2ε)p(β | h,Ψ)p(h | θh)p(θh)p(Ψ)p(σ2ε).

The full set of prior hyperparameters is (bµ, Bµ, aϕ, bϕ,M ,U ,V , aε, bε, Bσ).

The full conditional distributions of h and θh along with an associated sampler

are presented in Kim et al. (1998) and Kastner and Frühwirth-Schnatter (2014). After

Gibbs updates to β and Ψ, γ is recalculated through Equation 6. As each {γtk}Tt=1 is

assumed to be independent of the others with different k, each {γtk}Tt=1 is a univariate

time series with an associated stochastic volatility process {htk}Tt=1 as in Kim et al.

(1998). That article carries out Bayesian inference for {htk}Tt=1 and its three associated

parameters {µk, ϕk, σk} through a mixture sampler applied to {γtk}Tt=1. The R pack-

age stochvol developed by Kastner (2016) employs this mixture sampler as well as

the Ancillarity-Sufficiency Interweaving Strategy in Kastner and Frühwirth-Schnatter

(2014) to achieve highly efficient Bayesian inference.
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The remaining full conditional distributions are as follows:

β | y,h,θh,Ψ, σ2ε ∼ NTK

(
µβ, σ

2
εΛ

−1
β

)
,

σ2ε | y,β,h,θh,Ψ ∼ InvGamma

(
aε +

ny
2
, bε +

1

2
∥y −m− Fβ∥2

)
,

vec(Ψ) | y,β,h, σ2ε ∼ NK2(µΨ,ΣΨ),

where

µβ = Λ−1
β F⊤(y −m),

Λβ = F⊤F + σ2εP
⊤diag

(
e−h

)
P ,

Σt = diag
(
eht

)
,

µΨ = ΣΨvec

(
T∑
t=2

Σ−1
t βtβ

⊤
t−1 +U−1MV −1

)
,

ΣΨ =

[
T∑
t=2

(βt−1β
⊤
t−1 ⊗Σ−1

t ) + (V −1 ⊗U−1)

]−1

.

The full conditional distributions for β and σ2ε follow from the well-known Bayesian

linear regression with the normal-inverse-gamma conjugate prior. A derivation can be

found, for example, in Gelman et al. (2013). Though the dimension of β is potentially

very large, we can exploit the block structure of its precision matrix. Appendix Section

B describes how to sample efficiently from the full conditional for β. Refer to Appendix

Section C for a derivation of the full conditional for Ψ.

4. Value-at-Risk Estimation for Option Portfolios

In this section, we apply the FSV model to SPX option surface data in order to esti-

mate Value-at-Risk for option portfolios. The results indicate that modeling stochastic

volatility can improve quantile estimates in this setting. Subsection 4.1 provides an

overview of the application. Subsection 4.2 describes in detail the SPX option sur-

face data set and its representation as a functional time series {Yt(τ)}. Subsection
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4.3 motivates the application of an FSV model through an exploratory analysis and

visualizes the basis functions chosen for the application. Subsection 4.4 discusses the

construction of a forecast distribution for Yt(τ) from posterior samples and describes

how the forecast distribution is used to estimate quantiles. Subsection 4.5 evaluates

the quality of the forecast against a benchmark constant volatility model.

4.1. Overview of Application

The field of financial risk management is concerned with estimating worst case out-

comes (rather than mean outcomes) in order to quantify the magnitude of potential

losses due to adverse movements in market prices or other risk factors. Consequently,

the problem of quantile estimation is of key importance. Stochastic volatility models

are often employed in the field because they better represent the empirical movements

of financial time series and, as a result, improve upon quantile estimates for univariate

and multivariate time series (Sadorsky 2005; Han et al. 2014; Huang 2015; Bui Quang

et al. 2018). This application tests whether the same pattern holds for a functional

time series.

In the present application, the functional time series {Yt(τ)}Tt=1 represents a sur-

face of option price quotes and is modeled with the proposed FSV model. An option

gives the owner the choice to buy (if a call option) or sell (if a put option) an under-

lying asset St at some fixed strike price κ at some future maturity date u > t. For any

single underlying asset (such as the S&P 500 Index) there exists an entire surface of

options for that asset, because options can differ by their strike price κ and maturity

date u. These two variables define the dimensions of the domain variable τ ∈ T ⊆ R2.

The range variable Yt(τ) can be thought of as a proxy for the price of the option with

contract terms τ , as there is a one-to-one relationship between Yt(τ) and the option

price. These variables are described in full detail in Subsection 4.2.

Consider a loss random variable Lt+1 = Πt(Yt+1) for some functional Πt :

L2(T ) → R. The loss random variable Lt+1 represents the decrease in value of a

portfolio of options from time t to time t+ 1. The functional Πt is determined by the

composition of the option portfolio held at time t. Both Lt+1 and Πt are constructed

explicitly in Subsection 4.4.
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The next-day (1− α)100% Value-at-Risk for Lt+1 is defined as

VaR(Lt+1, 1− α) = sup {x ∈ R : P (Lt+1 ≤ x) < 1− α} (7)

= F−1
Lt+1

(1− α) if Lt+1 is a continuous R.V. (8)

In other words, Value-at-Risk is the quantile function for the loss random variable Lt+1.

Estimating Value-at-Risk is a key problem in financial risk management as it identifies

the potential magnitude of loss Lt due to the random market price movements of Yt.

A natural approach for evaluating the quality of an estimator V̂aR(Lt+1, 1 − α)

is to compare the proportion of observed exceedences of the quantile estimate to

the true level of the quantile. Define the exceedence indicator variables Xt =

1{Lt+1>V̂aR(Lt+1,1−α)} for t = 1, . . . , T − 1 and set NT−1 =
∑T−1

t=1 Xt. If we assume the

Xt variables are independent and identically distributed, then NT−1 ≡
∑T−1

t=1 Xt ∼

Binomial(T−1, αN ). Kupiec (1995) proposes a binomial hypothesis test ofH0 : αN = α

against H1 : αN ̸= α in order to evaluate the whether the estimator V̂aR(Lt+1, 1− α)

has the correct exceedence rate. This is done on a year-by-year basis in Subsection 4.5.

4.2. SPX Option Surface Data Set as a Functional Time Series

This section describes the SPX option data set and its representation as a functional

time series. It will provide full descriptions of the domain and range variables, and

motivate the use of a functional time series model.

A European option is a financial contract that, at some fixed maturity date in

the future, gives the owner the option to purchase (if a call option) or sell (if a put

option) a unit of an underlying asset at a fixed strike price, regardless of the actual

market price of said asset. In the case of an SPX option, the underlying asset is the

Standard & Poors (S&P) 500 Index.

Our method is applied to daily SPX option surfaces sourced from OptionMetrics’s

IvyDB database (2017) from January 1, 2010 to December 31, 2017. There are T =

2013 days in total. Each daily option surface includes between 1400 and 10000 option

contracts, which are differentiated by their strike price, date of maturity, and whether
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they are call options or put options. Option prices are quoted based on their Black-

Scholes implied volatility, the log of which is the variable of interest Yt(τ). There is

a one-to-one relationship between the option price and Yt(τ) (see Equation 11). The

unfamiliar reader can regard Yt(τ) as a proxy for option price.

The domain variable τ =
(
τ1, τ2

)
is two-dimensional with τ1 ∈

[
1,
√
1095

]
being

the square root of number of days to maturity, and τ2 ∈ [0, 1] being the call option

delta. τ1 is set as such because the implied volatility of an option is a function of its

remaining time to maturity instead of the preset date of maturity. τ2 is set as such

because implied volatility depends on the ratio of the underlying asset price to the

strike price (or equivalently, the option delta) instead of the absolute strike price. The

functional domain T is the rectangle determined by the two univariate domains:

τ ≡
(
τ1, τ2

)
∈ T ≡

[
1,
√
1095

]
× [0, 1].

We include both call and put options in our analysis. They share the same implied

volatility if their strike price and maturity match, but their option deltas differ by a de-

terministic relationship. In order to keep domain variables equivalent for the two types

of options, we convert a put option’s delta to its equivalent call option delta by adding

exp (−Dividend Yield× Time To Maturity) to its value. Refer to Hull (2018) for an

introduction to option pricing. Since illiquid option prices have high measurement er-

ror, options whose bid-ask spread is larger than 10% of the premium are excluded

from the analysis.

On any given day t, the observation points τt,1, . . . , τt,nt
∈ T are determined by

the options traded on the market that day. The set of observation points changes

every day, motivating the use of a functional time series model for the SPX option

data set. The observation set changes each day because the option contracts in the

market are issued with a fixed date of maturity. Hence, the remaining time to maturity

τ1 decreases with each passing day and all observation points shift towards the short

maturity end of the domain with observations dropping out the domain when contracts

mature (that is, when τ1 = 0). Furthermore, new observations enter the domain

whenever new sets of option contracts are issued. Lastly, movements in the underlying

17



S&P500 Index change the delta τ2 of all options simultaneously, resulting in daily

lateral shifts in observation points.

4.3. Basis Function Estimation and Exploratory Analysis

This section motivates the use of an FSV model. We estimate the functional basis

{fk}Kk=1 that will be passed into subsequent Bayesian analysis using FPCA, and present

an initial exploratory analysis. The sample time courses and principal component

scores suggest that the functional time series exhibits stochastic volatility.

We used penalized spline smoothing, as implemented in the R package mgcv by

Wood (2011), to estimate the mean functionm(τ) and functional principal components

f1, . . . , fK . These are shown in Figure 1. The following knot sequences, chosen based

on empirical quantiles of the observation points, were used in each dimension of the

domain to define the cubic tensor splines:

K1 = (1.4, 1.4, 1.4, 1.4, 8.1, 12.7, 19.3, 33.1, 33.1, 33.1, 33.1),

K2 = [0.10, 0.10, 0.10, 0.10, 0.37, 0.57, 0.71, 0.79, 0.86, 0.90, 0.90, 0.90, 0.90].

The mean function m(τ) demonstrates the characteristic “volatility skew” en-

demic to equity option markets. The Black-Scholes model assumes a Gaussian distri-

bution for market returns. If such an assumption were true, the observed volatility

surface would be flat. However, we see that the S&P500 returns exhibit both heavy

tails and a negative skewness, leading to convexity and skewness in the mean function,

respectively.

The first principal component f1(τ) is negative when time to maturity is small

while positive when time to maturity is large, resulting in a tilt of the surface with

respect to maturity. The second principal component f2(τ) results in a bending effect

with respect to maturity. The third principal component f3(τ) tilts the short maturity

end of the surface with respect to delta. The fourth principal component f4(τ) has a

similar bending effect as the second but pushes the edges upward in general. The fifth

principal component f5(τ) pushes up one of the corners.
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Figure 1.: Mean Functionm(τ) and Functional Principal Components f1(τ), . . . , f5(τ).
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Figure 2.: Differenced time courses {Yt+1(τj) − Yt(τj)}T−1
t=1 for five sample locations

τ1, . . . , τ5, which exhibit stochastic volatility.

In an exploratory analysis, we see evidence for stochastic volatility. For five fixed

sample domain points τ1, . . . , τ5, the differenced time courses {Yt+1(τj) − Yt(τj)}T−1
t=1

are shown in Figure 2. The time-differenced principal component scores are shown in

Figure 3. Both sets of series exhibit stochastic volatility and motivate the application

of the FSV model. Because the amount of stochastic volatility observed in the previous

section varies year-by-year, the model is fit separately to each of the 8 years of data.

20



Figure 3.: Differenced Principal Component Scores βt+1,k−βtk, which exhibit stochas-
tic volatility.
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4.4. Value-at-Risk Estimation for Option Portfolios

A forecast distribution for portfolio loss is required to estimate quantiles and thus

Value-at-Risk. This section describes how to use the posterior samples {θj}Jj=1 pro-

duced by our MCMC algorithm to build a conditional forecast distribution {L∗j
t+1}Jj=1

for a next-day option portfolio loss random variable Lt+1 = Πt(Yt+1) where Πt :

L2(T ) → R. The option portfolio pricing functional Πt is explicitly described by

Equations 11–14. The forecast distribution {θj}Jj=1 is constructed from Equations 9–

13. The key quantity of interest in financial risk management is the Value-at-Risk

(VaR) which is defined by the quantile of a loss distribution for a given time horizon

and is defined in Equation 7.

For this application, we complete the prior specification as follows. For each k,

µk ∼ N(0, 1),

(ϕk + 1)/2 ∼ Beta(20, 1.5),

σ2k ∼ χ2
1,

while

Ψ ∼ Matrix NormalK,K

(
0K , 10

6 · IK , IK
)
,

σ2ε ∼ InvGamma(0.001, 0.001).

The prior for ϕk follows the example of Kim et al. (1998) and implies a prior mean of

0.86 to reflect the volatility clustering endemic to financial time series. We have found

that the results are not sensitive to the choice of priors for µk and σk provided the

series has a reasonable length. The hyperparameters of the matrix normal prior for Ψ

and the inverse gamma prior for σ2ε were chosen so that these prior distributions do

not strongly influence the results.

As we saw in our exploratory analysis (see Figures 2 and 3), the amount of

stochastic volatility varies for each year. Thus, we fit the FSV model separately to

each year of data. Figure 4 presents the 95% pointwise credible intervals for each of the
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Figure 4.: 95% pointwise credible bands for the latent log-volatility process with pos-
terior median in bold. Dates range from start of 2010 to end of 2017. The roughness
of random variation in htk indicates a notable presence of stochastic volatility in years
2010-2011 and 2015-2017.

log-volatility processes htk against t. Years 2010-2011 and 2015-2017 exhibit a higher

degree of roughness in the random variation, indicating a higher presence of stochastic

volatility for these years. This is further illustrated by the posterior histograms of the

stochastic volatility parameter σ1 appearing in Figure 5. The histograms are bounded

away from zero, especially in the years 2010-2011 and 2015-2017. The results are similar

for σ2, . . . , σK .

23



Figure 5.: Posterior distributions for σ1, the volatility of ht1. The histograms exhibit
most of their probability mass away from 0 particularly in the years 2010-2011 and
2015-2017, indicating the presence of stochastic volatility.

To simplify the presentation of what follows, it should be understood that a pos-

terior draw corresponds to the fit from the year containing t. For each posterior sample

from the associated year’s model parameters θj = ({βt}j ,Ψj , σ2jε , {ht}j ,µj ,ϕj ,σj),

we forecast the option surface at time t+ 1 from time t as follows:

ζ∗jt+1 ∼ NK

[
0,diag

(
σ2j
)]

h∗j
t+1 = µj + ϕj⊤(hj

t − µj) + ζ∗jt+1

u∗j
t+1 | h

∗j
t+1 ∼ NK

[
0,diag

(
eh

∗j
t+1

)]
β∗j
t+1 = Ψjβj

t + u∗j
t+1

Y ∗j
t+1(τ) = F (τ)Tβ∗j

t+1

where F (τ) = [f1(τ), . . . , fK(τ)]⊤.

Given this forecast of the implied volatility surface Y ∗j
t+1(τ) and observation points

{τt+1|t,i}nt

i=1, we can compute the Black-Scholes log-implied volatilities {y∗jt+1,i}
nt

i=1 as

y∗jt+1,i = m(τt+1|t,i) + Y ∗j
t+1(τt+1|t,i) + ε∗jt+1,i, ε∗jt+1,i

iid∼ N(0, σj2ε ). (9)
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With their implied volatilities known, the options in the portfolio can be priced with

the Black-Scholes formula (Black and Scholes 1973). If an option’s log-implied volatility

at time t is yt, then its price is given by

Prem [Mt, St, κ, CP, rt(Mt), qt, yt] = (10)

CP
[
Ste

−qtMtΦ(CP × d+)− κe−rt(Mt)MtΦ(CP × d−)
]

(11)

where

d± =
log(St/κ) +

[
rt(Mt)− qt ± 1

2e
2yt
]
Mt

eyt

√
Mt

(12)

and

• Mt ≡Mt

(
τ1
)
=
(
τ1
)2
/365 is the time to maturity in years at time t,

• St is the spot price of S&P500 at time t,

• κ is the option strike price,

• CP =


1 for a call option,

−1 for a put option,

• rt(M) is the risk-free rate at time t associated with time to maturity M ,

• qt is the dividend yield of S&P500 at time t,

• yt is the log of implied volatility at time t,

• Φ is the standard normal cumulative distribution function.

Suppose on day t the set of traded options are at locations {τt,i}nt

i=1. Then the

updated observation points {τt+1|t,i}nt

i=1 on day t+ 1 are calculated as follows:

(1) Days to maturity τ1t+1|t,i is reduced by the number of trading days between time

t and t + 1. This is usually one day but can be more because of weekends and

holidays.

(2) Option delta τ2t+1|t,i is assumed equal to the previous day’s value τ2t,i.

(3) The other option parameters St+1|t, κ, rt+1|t(Mt+1), qt+1|t are held equal to day

t’s values St, κ, rt(Mt), qt to prevent looking ahead to future data.

Thus, for each posterior sample {y∗jt+1,i}
nt

i=1, we can produce joint forecasts for the
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option prices {FP ∗j
t+1,i}

nt

i=1 where

FP ∗j
t+1,i = Prem

[
Mt+1, St, κ, CP, rt(Mt), qt, y

∗j
t+1,i

]
.

These forecasted option prices can be compared to the actual option prices

{APt,i}nt

i=1 and {APt+1,i}nt

i=1 on days t and t + 1, respectively, to assess the perfor-

mance of the forecast. Given a portfolio with cti units of option i for i = 1, . . . , nt,

we can compute the forecasted loss distribution {L∗j
t+1}Jj=1 and actual loss Lt+1 of the

portfolio as

L∗j
t+1 =

nt∑
i=1

cti

(
APt,i − FP ∗j

t+1,i

)
(13)

Lt+1 =

nt∑
i=1

cti (APt,i −APt+1,i) . (14)

We can take sample quantile of the forecasted loss distribution as our estimate of the

(1− α)100% one-day Value-at-Risk, setting

V̂aR(Lt+1, 1− α) = quantile
(
{L∗j

t+1}
J
j=1, 1− α

)
. (15)

The next step is to assess whether the quantiles of the forecast distribution match the

quantiles of the true loss distribution.

4.5. Backtesting Value-at-Risk

In order to evaluate the accuracy of our Value-at-Risk estimates, we can test if the

historically observed exceedence rates of our quantile estimates are consistent with the

true quantile levels. This process of evaluation based on historical data is known as

backtesting. A 95% Value-at-Risk estimate should be breached by approximately 5%

of observed losses if the observed trials are independent and the estimate is accurate.

We can test whether the estimator proposed in Subsection 4.4 is accurate in this sense

using the binomial hypothesis test discussed in Subsection 4.1.

We focus on option portfolios whose values are most sensitive to movements in
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Figure 6.: Profit diagram for an option strangle portfolio.

volatility. An option strangle is a portfolio consisting of an out-of-money call option

(whose strike is below the current S&P 500 level) and an out-of-money put option

(whose strike is above the current S&P 500 level) where the call and put strikes are

roughly the same distance apart from the current S&P 500 level. Such portfolios are

particularly sensitive to movements in implied volatility eYt(τ), since a strangle profits

from large moves in the S&P but loses money on small moves. The profit diagram of

a strangle portfolio is illustrated in Figure 6.

The binomial test of Kupiec (1995) described in Subsection 4.1 requires indepen-

dent trials, so we use a different randomized option portfolio on each trading day in

order to decorrelate the trials. To construct these randomized portfolios, on each day

t = 1, . . . , T − 1, a set of random out-of-money options are chosen from the subset of

options common to both days t and t + 1 so that the actual price movement can be

computed. These out-of-money options are chosen in 25 unique pairs of calls and puts

so that we can form strangle positions. Hence, if a call option with strike price κ1 > St

is selected, then the put option whose strike is closest to κ2 = St − (κ1 − St) is also

chosen so that the put and call options are roughly the same distance apart from the

current spot price with both options out-of-money.

For each t = 1, . . . , 2012, consider a simple randomized portfolio {cti}50i=1 on these

50 options where each cti is either 1 or -1 with equal probability. These coefficients

determine the portfolio pricing functionals {Πt} through Equations 13 and 14. Since

the actual price movements of these portfolios are known, we can apply the binomial

hypothesis test described in Subsection 4.1 to the one-day Value-at-Risk estimator

in Equation 15. A separate binomial test is done for each year. The 95% confidence
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intervals of the exceedence rates of VaR95, VaR97.5, and VaR99 are shown in blue in

Figure 7.

For comparison, we also made forecasts based on a benchmark model with con-

stant volatility. The benchmark model assumes each coefficient series {βtk}Tt=1 has

constant volatility vk. Setting v = (v1, . . . , vK)⊤, the benchmark model satisfies

yt = mt + Ftβt + εt, εt ∼ Nnt

(
0, σ2εI

)
,

βt = Ψβt−1 + γt, γt ∼ NK [0,diag(v)]

for all t. Each vk is assigned an independent InvGamma(ak, bk) prior . The full condi-

tional distribution for v is standard, and all other full conditional distributions remain

the same with the substitution ht = log(v) for each t.

The results in Figure 7 indicate that the exceedence rates of the stochastic

volatility-based VaR estimates are generally closer to the true quantile levels than

those of the constant volatility-based VaR estimates. The binomial confidence inter-

vals associated with the stochastic volatility model’s VaR estimates include the true

level in almost all years, while the intervals associated with the constant volatility

model’s VaR estimates miss far more frequently. These findings indicate that incorpo-

rating stochastic volatility leads to better quantile estimates.

28



Figure 7.: 95% confidence intervals for the exceedence rates of Value-at-Risk.
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5. Conclusion

To review, we introduced an analogue of the familiar stochastic volatility model for

functional time series, with the goal of accurately modeling option surfaces. We re-

duced that functional specification to a finite dimensional vector time series model and

discussed a strategy for Bayesian inference that enables forecasting, quantile estima-

tion, and other uncertainty quantification. Motivated by an exploratory analysis that

revealed evidence of stochastic volatility, we applied the FSV model to SPX option

surfaces and demonstrated through backtesting that the FSV model leads to improve

quantile estimates and thus improved Value-at-Risk estimates for option portfolios.
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Aue A, Horváth L, F Pellatt D. 2017. Functional Generalized Autoregressive Conditional

Heteroskedasticity. Journal of Time Series Analysis. 38(1):3–21.

Aue A, Klepsch J. 2017. Estimating Functional Time Series by Moving Average Model Fitting.
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Klepsch J, Klüppelberg C, Wei T. 2017. Prediction of Functional ARMA Processes with an

Application to Traffic Data. Econometrics and Statistics. 1(C):128–149.

32



Kowal DR, Matteson DS, Ruppert D. 2017. A Bayesian Multivariate Functional Dynamic

Linear Model. Journal of the American Statistical Association. 112(518):733–744.

Kowal DR, Matteson DS, Ruppert D. 2019. Functional Autoregression for Sparsely Sampled

Data. Journal of Business & Economic Statistics. 37(1):97–109.

Kupiec PH. 1995. Techniques for Verifying the Accuracy of Risk Measurement Models. The

Journal of Derivatives. 3(2):73–84.

Li D, Robinson PM, Shang HL. 2020. Long-Range Dependent Curve Time Series. Journal of

the American Statistical Association. 115(530):957–971.
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Appendix A. Hilbert-Schmidt Theorem and Dimension Reduction

Assuming T is uncountable, the functional time series {Yt} represents a random pro-

cess with uncountably infinite dimension, but its reduction to a countably infinite L2

approximation can be justified using the Hilbert-Schmidt theorem.

Let vt(τ) = eht(τ), h̃t(τ) = ht(τ)− µ(τ), and

h̃t(τ) = c(τ) +

∫
T
ϕ(τ, u)h̃t−1(u)du+ ζt(τ)

Suppose the parameter functions µ, ψ, kζ of the volatility process are such that

{Yt} is a mean-zero covariance stationary process with a defined unconditional covari-

ance function

Cov(ηt(τ), ηt(u)) = kη(τ, u) ∀t.

If kη ∈ L2(T ×T ), then the associated covariance operator f 7→
∫
T kη(·, u)f(u)du

is a Hilbert-Schmidt operator on L2(T ), so by the Hilbert-Schmidt theorem we can
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decompose the covariance function kη by its spectral expansion

kη(τ, u)
L2

=

∞∑
k=1

λkfk(τ)fk(u)

where the eigenfunctions {fk}∞k=1 form an orthonormal basis of L2(T ) and the eigen-

values {λk}∞k=1 are a non-negative decreasing square-summable sequence. For T com-

pact we can strengthen the result to uniform convergence with Mercer’s theorem if

kη(τ, τ) ∈ L1(T ) or kη(τ, u) is continuous.

To reduce from countably-infinite dimension to finite dimension, we appeal to the

Karhunen-Loève theorem and truncate to the first K principal components {fk}Kk=1.

We can get an empirical estimate of these eigenfunctions using FPCA on the sample

covariance function of the spline-smoothed surfaces {Ŷt}:

k̂η(τ, u) =
1

T

T∑
t=1

Ŷt(τ)Ŷt(u)

If we assume ηt ∈ Span{f1, . . . , fK} as in Section 2.3, then we can then write the

conditional covariance functions as

Cov(ηt(τ), ηt(u) | Ft−1) =

K∑
k=1

ehtkfk(τ)fk(u)

and our model for FSV reduces to a vector stochastic volatility model on the log-

eigenvalues {ht}. We know that {ht} is a stochastic volatility model since ht depends

on ζt which is not Ft−1 measurable.

Appendix B. Sampling the Full Conditional for β

For the sake of brevity, in this section ex for a vector x ∈ Rd will be shorthand for the

d× d diagonal matrix diag{ex}.

The precision matrix Λβ takes on the following block matrix form, where each

block is K ×K, and there are T rows and T columns of blocks:
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Λβ = F⊤F + σ2εP
⊤e−hP

=


F⊤
1 F1 0 · · · 0

0 F⊤
2 F2 · · · 0

...
...

. . .
...

0 0 · · · F⊤
T FT



+ σ2ε


I −Ψ⊤ · · · 0

0 I · · · 0
...

...
. . . −Ψ⊤

0 0 · · · I




e−h1 0 · · · 0

0 e−h2 · · · 0
...

...
. . . 0

0 0 · · · e−hT




I 0 · · · 0

−Ψ I · · · 0
...

...
. . . 0

0 · · · −Ψ I



=



G1 H⊤
1 · · · 0

H1 G2
. . . 0

...
. . .

. . . H⊤
T−1

0 · · · HT−1 GT


where

Gt =


F⊤
t Ft + σ2εe

−ht + σ2εΨ
⊤e−ht+1Ψ for t = 1, . . . , T − 1

F⊤
T FT + σ2εe

−hT for t = T

and

Ht = −σ2εe−ht+1Ψ for t = 1, . . . , T − 1

As Λβ is a block tridiagonal matrix, its Cholesky factor L is bidiagonal where Λβ =
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LL⊤ as follows:

Λβ =



G1 H⊤
1 · · · 0

H1 G2
. . . 0

...
. . .

. . . H⊤
T−1

0 · · · HT−1 GT


=



Q1 0 · · · 0

R1 Q2
. . . 0

...
. . .

. . . 0

0 · · · RT−1 QT


︸ ︷︷ ︸

L



Q⊤
1 R⊤

1 · · · 0

0 Q⊤
2

. . . 0
...

. . .
. . . R⊤

T−1

0 · · · 0 Q⊤
T


︸ ︷︷ ︸

L⊤

Blockwise multiplication yields the following system of equations:

G1 = Q1Q
⊤
1

Ht = RtQ
⊤
t for t = 1, . . . , T − 1

Gt = Rt−1R
⊤
t−1 +QtQ

⊤
t for t = 2, . . . , T

and therefore we can recursively construct the blocks of L as follows:

Q1 = Chol(G1)

Rt = HtQ
−⊤
t for t = 1, . . . , T − 1

Qt = Chol(Gt −Rt−1R
⊤
t−1) for t = 2, . . . , T

Hence to compute µβ = Λ−1
β F⊤(y −m) = L−⊤L−1F⊤(y −m), we can succes-

sively solve the systems below

Lµ̃β = F⊤(y −m)

L⊤µβ = µ̃β

To obtain the explicit solution, first write the vectors as follows:
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µβ =


m̂1

...

m̂T

 , µ̃β =


m̃1

...

m̃T

 , F⊤(y −m) =


ξ1
...

ξT


where each entry above is a K × 1 sub-vector.

To solve for µ̃β from Lµ̃β = F⊤(y −m),



Q1 0 · · · 0

R1 Q2
. . . 0

...
. . .

. . . 0

0 · · · RT−1 QT




m̃1

...

m̃T

 =


ξ1
...

ξT



we have

m̃t =


Q−1

1 ξ1 for t = 1,

Q−1
t (ξt −Rt−1m̃t−1) for t = 2, . . . , T

.

Then to solve for µβ from L⊤µβ = µ̃β,



Q⊤
1 R⊤

1 · · · 0

0 Q⊤
2

. . . 0
...

. . .
. . . R⊤

T−1

0 · · · 0 Q⊤
T




m̂1

...

m̂T

 =


m̃1

...

m̃T



we have

m̂t =


Q−⊤

T m̃T for t = T,

Q−⊤
t (m̃t −R⊤

t m̂t+1) for t = T − 1, . . . , 1

.

38



Lastly, to sample the full conditional of β, we draw a TK × 1 vector

z =


z1
...

zT

 ∼ NTK(0, I)

where each zi is a K×1 sub-vector. To compute βpost = µβ +σεL
−⊤z, segment βpost

into K × 1 subvectors

βpost =


βpost
1

...

βpost
T

 =


m̂1 + σεẑ1

...

m̂T + σεẑT


and compute

ẑt =


Q−⊤

T zT for t = T,

Q−⊤
t (zt −R⊤

t ẑt+1) for t = T − 1, . . . , 1

Appendix C. Derivation of Full Conditional for Ψ

Consider a matrix normal prior for Ψ ∼ Matrix NormalK,K(M,U, V ):

p(Ψ) = (2π)−K2/2|U |−K/2|V |−K/2 exp

(
−1

2
tr[V −1(Ψ−M)⊤U−1(Ψ−M)]

)

Let Σt = diag(exp(ht)). Then

p(Ψ | y,β,h, σ2ε) ∝ p(β | h,Ψ)p(Ψ)

∝ exp

(
−1

2

T∑
t=2

(βt −Ψβt−1)
⊤Σ−1

t (βt −Ψβt−1)−
1

2
tr[V −1(Ψ−M)⊤U−1(Ψ−M)]

)

= exp (−Ω)

It is sufficient to look at the quadratic form Ω to determine the full conditional
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distribution.

Ω =
1

2

T∑
t=2

(βt −Ψβt−1)
⊤Σ−1

t (βt −Ψβt−1) +
1

2
tr
[
V −1(Ψ−M)⊤U−1(Ψ−M)

]

=
1

2

T∑
t=2

(
βtβ

⊤
t−1

∥βt−1∥2
βt−1 −Ψβt−1

)⊤

Σ−1
t

(
βtβ

⊤
t−1

∥βt−1∥2
βt−1 −Ψβt−1

)

+
1

2
tr
[
V −1(Ψ−M)⊤U−1(Ψ−M)

]
=

1

2

T∑
t=2

β⊤
t−1

(
Ψ−

βtβ
⊤
t−1

∥βt−1∥2

)⊤

Σ−1
t

(
Ψ−

βtβ
⊤
t−1

∥βt−1∥2

)
βt−1

+
1

2
tr
[
V −1(Ψ−M)⊤U−1(Ψ−M)

]
=

1

2

T∑
t=2

tr

β⊤
t−1

(
Ψ−

βtβ
⊤
t−1

∥βt−1∥2

)⊤

Σ−1
t

(
Ψ−

βtβ
⊤
t−1

∥βt−1∥2

)
βt−1


+

1

2
tr
[
V −1(Ψ−M)⊤U−1(Ψ−M)

]
=

1

2

T∑
t=2

tr
[
(Ψ− ξt)

⊤Σ−1
t (Ψ− ξt)βt−1β

⊤
t−1

]
+

1

2
tr
[
(Ψ−M)⊤U−1(Ψ−M)V −1

]

where ξt =
βtβ⊤

t−1

∥βt−1∥2 . Using the identity

tr(A⊤BCD⊤) = vec(A)⊤(D ⊗B)vec(C)

we have

Ω =
1

2

T∑
t=2

[vec(Ψ)− vec(ξt)]
⊤ (βt−1β

⊤
t−1 ⊗ Σ−1

t ) [vec(Ψ)− vec(ξt)]

+
1

2
[vec(Ψ)− vec(M)]⊤ (V −1 ⊗ U−1) [vec(Ψ)− vec(M)]

=
1

2
vec(Ψ)⊤

[
T∑
t=2

(βt−1β
⊤
t−1 ⊗ Σ−1

t ) + (V −1 ⊗ U−1)

]
vec(Ψ)

− vec(Ψ)⊤

[
T∑
t=2

(βt−1β
⊤
t−1 ⊗ Σ−1

t )vec(ξt) + (V −1 ⊗ U−1)vec(M)

]
+ const
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After simplifying the terms below,

(βt−1β
⊤
t−1 ⊗ Σ−1

t )vec(ξt) = (βt−1β
⊤
t−1 ⊗ Σ−1

t )
vec(βtβ

⊤
t−1)

∥βt−1∥2

= vec(Σ−1
t βt

β⊤
t−1

∥βt−1∥2
βt−1β

⊤
t−1)

= vec(Σ−1
t βtβ

⊤
t−1)

(V −1 ⊗ U−1)vec(M) = vec(U−1MV −1)

we get

Ω =
1

2
vec(Ψ)⊤

[
T∑
t=2

(βt−1β
⊤
t−1 ⊗ Σ−1

t ) + (V −1 ⊗ U−1)

]
vec(Ψ)

− vec(Ψ)⊤vec

(
T∑
t=2

Σ−1
t βtβ

⊤
t−1 + U−1MV −1

)
+ const

which is the quadratic form for the multivariate normal below:

vec(Ψ) | y,β,h, σ2ε ∼ NK2(µΨ,ΣΨ)

µΨ = ΣΨvec

(
T∑
t=2

Σ−1
t βtβ

⊤
t−1 + U−1MV −1

)

ΣΨ =

[
T∑
t=2

(βt−1β
⊤
t−1 ⊗ Σ−1

t ) + (V −1 ⊗ U−1)

]−1
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